chromium/v8/src/compiler/control-equivalence.h

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_
#define V8_COMPILER_CONTROL_EQUIVALENCE_H_

#include "src/base/compiler-specific.h"
#include "src/common/globals.h"
#include "src/compiler/graph.h"
#include "src/compiler/node.h"
#include "src/zone/zone-containers.h"

namespace v8 {
namespace internal {
namespace compiler {

// Determines control dependence equivalence classes for control nodes. Any two
// nodes having the same set of control dependences land in one class. These
// classes can in turn be used to:
//  - Build a program structure tree (PST) for controls in the graph.
//  - Determine single-entry single-exit (SESE) regions within the graph.
//
// Note that this implementation actually uses cycle equivalence to establish
// class numbers. Any two nodes are cycle equivalent if they occur in the same
// set of cycles. It can be shown that control dependence equivalence reduces
// to undirected cycle equivalence for strongly connected control flow graphs.
//
// The algorithm is based on the paper, "The program structure tree: computing
// control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which
// also contains proofs for the aforementioned equivalence. References to line
// numbers in the algorithm from figure 4 have been added [line:x].
class V8_EXPORT_PRIVATE ControlEquivalence final
    : public NON_EXPORTED_BASE(ZoneObject) {};

}  // namespace compiler
}  // namespace internal
}  // namespace v8

#endif  // V8_COMPILER_CONTROL_EQUIVALENCE_H_