chromium/third_party/blink/web_tests/external/wpt/webnn/conformance_tests/prelu.https.any.js

// META: title=test WebNN API prelu operation
// META: global=window,dedicatedworker
// META: variant=?cpu
// META: variant=?gpu
// META: variant=?npu
// META: script=../resources/utils.js
// META: timeout=long

'use strict';

// https://www.w3.org/TR/webnn/#api-mlgraphbuilder-prelu
// Calculate the parametric version of rectified linear function (Parametric
// ReLU) on the input tensor element-wise. The calculation follows the
// expression max(0, x) + slope * min(0, x).
//
// MLOperand prelu(MLOperand input, MLOperand slope);


const getPreluPrecisionTolerance = (graphResources) => {
  const toleranceValueDict = {float32: 1, float16: 1};
  const expectedDataType =
      getExpectedDataTypeOfSingleOutput(graphResources.expectedOutputs);
  return {metricType: 'ULP', value: toleranceValueDict[expectedDataType]};
};

const preluTests = [
  {
    'name': 'prelu float32 0D scalar',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [-4.794857501983643],
          'descriptor': {'dimensions': [], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [1.1202747821807861],
          'descriptor': {'dimensions': [], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [-5.371557712554932],
          'descriptor': {'dimensions': [], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 1D constant tensors',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [
            9.343092918395996,  0.2800687253475189,  -4.617084980010986,
            1.1202747821807861, -1.4334710836410522, -3.157594919204712,
            -6.28995418548584,  -5.0107879638671875, -6.899077415466309,
            3.5725347995758057, 6.861966609954834,   -1.961531400680542,
            4.5832037925720215, 2.6643502712249756,  9.192955017089844,
            -9.554699897766113, -5.505102157592773,  -2.3927369117736816,
            3.58212947845459,   -2.3224003314971924, -1.9816573858261108,
            4.155889987945557,  -1.799522042274475,  9.295849800109863
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -23.817113876342773, -1.342889666557312,  8.413617134094238,
            6.108623504638672,   12.173455238342285,  3.3143365383148193,
            1.1687211990356445,  0.7103435397148132,  46.32490539550781,
            5.787421703338623,   -25.7709903717041,   9.608142852783203,
            7.3295159339904785,  -10.535453796386719, 7.067296981811523,
            9.439736366271973,   14.083043098449707,  20.718313217163086,
            8.47507381439209,    4.551425457000732,   18.365745544433594,
            -1.0895805358886719, 1.3258955478668213,  -68.95950317382812
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 1D tensors',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [
            9.343092918395996,  0.2800687253475189,  -4.617084980010986,
            1.1202747821807861, -1.4334710836410522, -3.157594919204712,
            -6.28995418548584,  -5.0107879638671875, -6.899077415466309,
            3.5725347995758057, 6.861966609954834,   -1.961531400680542,
            4.5832037925720215, 2.6643502712249756,  9.192955017089844,
            -9.554699897766113, -5.505102157592773,  -2.3927369117736816,
            3.58212947845459,   -2.3224003314971924, -1.9816573858261108,
            4.155889987945557,  -1.799522042274475,  9.295849800109863
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -23.817113876342773, -1.342889666557312,  8.413617134094238,
            6.108623504638672,   12.173455238342285,  3.3143365383148193,
            1.1687211990356445,  0.7103435397148132,  46.32490539550781,
            5.787421703338623,   -25.7709903717041,   9.608142852783203,
            7.3295159339904785,  -10.535453796386719, 7.067296981811523,
            9.439736366271973,   14.083043098449707,  20.718313217163086,
            8.47507381439209,    4.551425457000732,   18.365745544433594,
            -1.0895805358886719, 1.3258955478668213,  -68.95950317382812
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 2D tensors',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [4, 6], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [
            9.343092918395996,  0.2800687253475189,  -4.617084980010986,
            1.1202747821807861, -1.4334710836410522, -3.157594919204712,
            -6.28995418548584,  -5.0107879638671875, -6.899077415466309,
            3.5725347995758057, 6.861966609954834,   -1.961531400680542,
            4.5832037925720215, 2.6643502712249756,  9.192955017089844,
            -9.554699897766113, -5.505102157592773,  -2.3927369117736816,
            3.58212947845459,   -2.3224003314971924, -1.9816573858261108,
            4.155889987945557,  -1.799522042274475,  9.295849800109863
          ],
          'descriptor': {'dimensions': [4, 6], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -23.817113876342773, -1.342889666557312,  8.413617134094238,
            6.108623504638672,   12.173455238342285,  3.3143365383148193,
            1.1687211990356445,  0.7103435397148132,  46.32490539550781,
            5.787421703338623,   -25.7709903717041,   9.608142852783203,
            7.3295159339904785,  -10.535453796386719, 7.067296981811523,
            9.439736366271973,   14.083043098449707,  20.718313217163086,
            8.47507381439209,    4.551425457000732,   18.365745544433594,
            -1.0895805358886719, 1.3258955478668213,  -68.95950317382812
          ],
          'descriptor': {'dimensions': [4, 6], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 3D tensors',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [2, 3, 4], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [
            9.343092918395996,  0.2800687253475189,  -4.617084980010986,
            1.1202747821807861, -1.4334710836410522, -3.157594919204712,
            -6.28995418548584,  -5.0107879638671875, -6.899077415466309,
            3.5725347995758057, 6.861966609954834,   -1.961531400680542,
            4.5832037925720215, 2.6643502712249756,  9.192955017089844,
            -9.554699897766113, -5.505102157592773,  -2.3927369117736816,
            3.58212947845459,   -2.3224003314971924, -1.9816573858261108,
            4.155889987945557,  -1.799522042274475,  9.295849800109863
          ],
          'descriptor': {'dimensions': [2, 3, 4], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -23.817113876342773, -1.342889666557312,  8.413617134094238,
            6.108623504638672,   12.173455238342285,  3.3143365383148193,
            1.1687211990356445,  0.7103435397148132,  46.32490539550781,
            5.787421703338623,   -25.7709903717041,   9.608142852783203,
            7.3295159339904785,  -10.535453796386719, 7.067296981811523,
            9.439736366271973,   14.083043098449707,  20.718313217163086,
            8.47507381439209,    4.551425457000732,   18.365745544433594,
            -1.0895805358886719, 1.3258955478668213,  -68.95950317382812
          ],
          'descriptor': {'dimensions': [2, 3, 4], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 4D tensors',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [
            9.343092918395996,  0.2800687253475189,  -4.617084980010986,
            1.1202747821807861, -1.4334710836410522, -3.157594919204712,
            -6.28995418548584,  -5.0107879638671875, -6.899077415466309,
            3.5725347995758057, 6.861966609954834,   -1.961531400680542,
            4.5832037925720215, 2.6643502712249756,  9.192955017089844,
            -9.554699897766113, -5.505102157592773,  -2.3927369117736816,
            3.58212947845459,   -2.3224003314971924, -1.9816573858261108,
            4.155889987945557,  -1.799522042274475,  9.295849800109863
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -23.817113876342773, -1.342889666557312,  8.413617134094238,
            6.108623504638672,   12.173455238342285,  3.3143365383148193,
            1.1687211990356445,  0.7103435397148132,  46.32490539550781,
            5.787421703338623,   -25.7709903717041,   9.608142852783203,
            7.3295159339904785,  -10.535453796386719, 7.067296981811523,
            9.439736366271973,   14.083043098449707,  20.718313217163086,
            8.47507381439209,    4.551425457000732,   18.365745544433594,
            -1.0895805358886719, 1.3258955478668213,  -68.95950317382812
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 5D tensors',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [2, 2, 1, 2, 3], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [
            9.343092918395996,  0.2800687253475189,  -4.617084980010986,
            1.1202747821807861, -1.4334710836410522, -3.157594919204712,
            -6.28995418548584,  -5.0107879638671875, -6.899077415466309,
            3.5725347995758057, 6.861966609954834,   -1.961531400680542,
            4.5832037925720215, 2.6643502712249756,  9.192955017089844,
            -9.554699897766113, -5.505102157592773,  -2.3927369117736816,
            3.58212947845459,   -2.3224003314971924, -1.9816573858261108,
            4.155889987945557,  -1.799522042274475,  9.295849800109863
          ],
          'descriptor': {'dimensions': [2, 2, 1, 2, 3], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -23.817113876342773, -1.342889666557312,  8.413617134094238,
            6.108623504638672,   12.173455238342285,  3.3143365383148193,
            1.1687211990356445,  0.7103435397148132,  46.32490539550781,
            5.787421703338623,   -25.7709903717041,   9.608142852783203,
            7.3295159339904785,  -10.535453796386719, 7.067296981811523,
            9.439736366271973,   14.083043098449707,  20.718313217163086,
            8.47507381439209,    4.551425457000732,   18.365745544433594,
            -1.0895805358886719, 1.3258955478668213,  -68.95950317382812
          ],
          'descriptor': {'dimensions': [2, 2, 1, 2, 3], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 broadcast 4D x 1D slope',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [5.073923110961914, 0.480774462223053, -7.091750144958496],
          'descriptor': {'dimensions': [3], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -12.934283256530762, -2.3052449226379395,  8.413617134094238,
            6.108623504638672,   -4.082877159118652,   3.3143365383148193,
            1.1687211990356445,  -0.06815595179796219, 47.61863327026367,
            5.787421703338623,   -1.8056097030639648,  34.737422943115234,
            7.3295159339904785,  -1.901092767715454,   7.067296981811523,
            9.439736366271973,   -1.2299076318740845,  61.40629196166992,
            8.47507381439209,    4.551425457000732,    65.72542572021484,
            -1.330268144607544,  1.3258955478668213,   52.60881042480469
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 broadcast 4D x 1D slope of shape [1]',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [5.0114545822143555],
          'descriptor': {'dimensions': [1], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -12.775040626525879, -24.029211044311523, 8.413617134094238,
            6.108623504638672,   -42.558738708496094, 3.3143365383148193,
            1.1687211990356445,  -0.7104380130767822, -33.65017318725586,
            5.787421703338623,   -18.821155548095703, -24.54753875732422,
            7.3295159339904785,  -19.816442489624023, 7.067296981811523,
            9.439736366271973,   -12.82020378112793,  -43.39335632324219,
            8.47507381439209,    4.551425457000732,   -46.44551467895508,
            -1.3138903379440308, 1.3258955478668213,  -37.17652893066406
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 broadcast 4D x 2D slope',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [
            4.874276161193848, -8.501633644104004, 1.1819270849227905,
            -9.985190391540527, -4.424202919006348, -6.654683589935303
          ],
          'descriptor': {'dimensions': [2, 3], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -12.425349235534668, 40.764122009277344, 8.413617134094238,
            6.108623504638672,   37.571624755859375, 3.3143365383148193,
            1.1687211990356445,  1.2052156925201416, -7.936229228973389,
            5.787421703338623,   16.615657806396484, 32.5965461730957,
            7.3295159339904785,  33.61741256713867,  7.067296981811523,
            9.439736366271973,   11.31790828704834,  57.621803283691406,
            8.47507381439209,    4.551425457000732,  -10.953948020935059,
            2.617891550064087,   1.3258955478668213, 49.366512298583984
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 broadcast 4D x 3D slope',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [5.073923110961914, 0.480774462223053, -7.091750144958496],
          'descriptor': {'dimensions': [1, 1, 3], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -12.934283256530762, -2.3052449226379395,  8.413617134094238,
            6.108623504638672,   -4.082877159118652,   3.3143365383148193,
            1.1687211990356445,  -0.06815595179796219, 47.61863327026367,
            5.787421703338623,   -1.8056097030639648,  34.737422943115234,
            7.3295159339904785,  -1.901092767715454,   7.067296981811523,
            9.439736366271973,   -1.2299076318740845,  61.40629196166992,
            8.47507381439209,    4.551425457000732,    65.72542572021484,
            -1.330268144607544,  1.3258955478668213,   52.60881042480469
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'prelu float32 broadcast 4D x 4D slope',
    'graph': {
      'inputs': {
        'preluInput': {
          'data': [
            -2.549168109893799, -4.794857501983643,  8.413617134094238,
            6.108623504638672,  -8.492292404174805,  3.3143365383148193,
            1.1687211990356445, -0.141762837767601,  -6.714652061462402,
            5.787421703338623,  -3.755627393722534,  -4.89828634262085,
            7.3295159339904785, -3.9542298316955566, 7.067296981811523,
            9.439736366271973,  -2.558180093765259,  -8.658834457397461,
            8.47507381439209,   4.551425457000732,   -9.267870903015137,
            -0.262177437543869, 1.3258955478668213,  -7.41831111907959
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'},
          'constant': true
        },
        'preluSlope': {
          'data': [5.0114545822143555],
          'descriptor': {'dimensions': [1, 1, 1, 1], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'prelu',
        'arguments': [{'input': 'preluInput'}, {'slope': 'preluSlope'}],
        'outputs': 'preluOutput'
      }],
      'expectedOutputs': {
        'preluOutput': {
          'data': [
            -12.775040626525879, -24.029211044311523, 8.413617134094238,
            6.108623504638672,   -42.558738708496094, 3.3143365383148193,
            1.1687211990356445,  -0.7104380130767822, -33.65017318725586,
            5.787421703338623,   -18.821155548095703, -24.54753875732422,
            7.3295159339904785,  -19.816442489624023, 7.067296981811523,
            9.439736366271973,   -12.82020378112793,  -43.39335632324219,
            8.47507381439209,    4.551425457000732,   -46.44551467895508,
            -1.3138903379440308, 1.3258955478668213,  -37.17652893066406
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'}
        }
      }
    }
  }
];

if (navigator.ml) {
  preluTests.forEach((test) => {
    webnn_conformance_test(
        buildGraphAndCompute, getPreluPrecisionTolerance, test);
  });
} else {
  test(() => assert_implements(navigator.ml, 'missing navigator.ml'));
}