// META: title=test WebNN API slice operation
// META: global=window,dedicatedworker
// META: variant=?cpu
// META: variant=?gpu
// META: variant=?npu
// META: script=../resources/utils.js
// META: timeout=long
'use strict';
// https://www.w3.org/TR/webnn/#api-mlgraphbuilder-slice
// Produce a slice of the input tensor.
//
// MLOperand slice(
// MLOperand input, sequence<[EnforceRange] unsigned long>starts,
// sequence<[EnforceRange] unsigned long>sizes);
const getSlicePrecisionTolerance = (graphResources) => {
const toleranceValueDict = {float32: 0, float16: 0};
const expectedDataType =
getExpectedDataTypeOfSingleOutput(graphResources.expectedOutputs);
return {metricType: 'ULP', value: toleranceValueDict[expectedDataType]};
};
const sliceTests = [
{
'name': 'slice float32 1D constant tensor',
'graph': {
'inputs': {
'sliceInput': {
'data': [
28.846250534057617, 97.95414733886719, -68.15961456298828,
14.978987693786621, 90.23090362548828, 76.59095764160156,
-24.556316375732422, 79.58749389648438, 65.21376037597656,
57.4397087097168, 74.41775512695312, -4.513182163238525,
0.5424534678459167, 80.44634246826172, 28.32765007019043,
74.02619171142578, -74.54559326171875, -27.306041717529297,
-70.42774200439453, 59.82632064819336, -58.46095275878906,
79.80570983886719, -9.857853889465332, 42.665199279785156
],
'descriptor': {'dimensions': [24], 'dataType': 'float32'},
'constant': true
}
},
'operators': [{
'name': 'slice',
'arguments':
[{'input': 'sliceInput'}, {'starts': [12]}, {'sizes': [12]}],
'outputs': 'sliceOutput'
}],
'expectedOutputs': {
'sliceOutput': {
'data': [
0.5424534678459167, 80.44634246826172, 28.32765007019043,
74.02619171142578, -74.54559326171875, -27.306041717529297,
-70.42774200439453, 59.82632064819336, -58.46095275878906,
79.80570983886719, -9.857853889465332, 42.665199279785156
],
'descriptor': {'dimensions': [12], 'dataType': 'float32'}
}
}
}
},
{
'name': 'slice float32 1D tensor',
'graph': {
'inputs': {
'sliceInput': {
'data': [
28.846250534057617, 97.95414733886719, -68.15961456298828,
14.978987693786621, 90.23090362548828, 76.59095764160156,
-24.556316375732422, 79.58749389648438, 65.21376037597656,
57.4397087097168, 74.41775512695312, -4.513182163238525,
0.5424534678459167, 80.44634246826172, 28.32765007019043,
74.02619171142578, -74.54559326171875, -27.306041717529297,
-70.42774200439453, 59.82632064819336, -58.46095275878906,
79.80570983886719, -9.857853889465332, 42.665199279785156
],
'descriptor': {'dimensions': [24], 'dataType': 'float32'}
}
},
'operators': [{
'name': 'slice',
'arguments':
[{'input': 'sliceInput'}, {'starts': [12]}, {'sizes': [12]}],
'outputs': 'sliceOutput'
}],
'expectedOutputs': {
'sliceOutput': {
'data': [
0.5424534678459167, 80.44634246826172, 28.32765007019043,
74.02619171142578, -74.54559326171875, -27.306041717529297,
-70.42774200439453, 59.82632064819336, -58.46095275878906,
79.80570983886719, -9.857853889465332, 42.665199279785156
],
'descriptor': {'dimensions': [12], 'dataType': 'float32'}
}
}
}
},
{
'name': 'slice float32 2D tensor',
'graph': {
'inputs': {
'sliceInput': {
'data': [
28.846250534057617, 97.95414733886719, -68.15961456298828,
14.978987693786621, 90.23090362548828, 76.59095764160156,
-24.556316375732422, 79.58749389648438, 65.21376037597656,
57.4397087097168, 74.41775512695312, -4.513182163238525,
0.5424534678459167, 80.44634246826172, 28.32765007019043,
74.02619171142578, -74.54559326171875, -27.306041717529297,
-70.42774200439453, 59.82632064819336, -58.46095275878906,
79.80570983886719, -9.857853889465332, 42.665199279785156
],
'descriptor': {'dimensions': [4, 6], 'dataType': 'float32'}
}
},
'operators': [{
'name': 'slice',
'arguments':
[{'input': 'sliceInput'}, {'starts': [2, 2]}, {'sizes': [2, 4]}],
'outputs': 'sliceOutput'
}],
'expectedOutputs': {
'sliceOutput': {
'data': [
28.32765007019043, 74.02619171142578, -74.54559326171875,
-27.306041717529297, -58.46095275878906, 79.80570983886719,
-9.857853889465332, 42.665199279785156
],
'descriptor': {'dimensions': [2, 4], 'dataType': 'float32'}
}
}
}
},
{
'name': 'slice float32 3D tensor',
'graph': {
'inputs': {
'sliceInput': {
'data': [
28.846250534057617, 97.95414733886719, -68.15961456298828,
14.978987693786621, 90.23090362548828, 76.59095764160156,
-24.556316375732422, 79.58749389648438, 65.21376037597656,
57.4397087097168, 74.41775512695312, -4.513182163238525,
0.5424534678459167, 80.44634246826172, 28.32765007019043,
74.02619171142578, -74.54559326171875, -27.306041717529297,
-70.42774200439453, 59.82632064819336, -58.46095275878906,
79.80570983886719, -9.857853889465332, 42.665199279785156
],
'descriptor': {'dimensions': [4, 3, 2], 'dataType': 'float32'}
}
},
'operators': [{
'name': 'slice',
'arguments': [
{'input': 'sliceInput'}, {'starts': [1, 1, 1]}, {'sizes': [3, 2, 1]}
],
'outputs': 'sliceOutput'
}],
'expectedOutputs': {
'sliceOutput': {
'data': [
57.4397087097168, -4.513182163238525, 74.02619171142578,
-27.306041717529297, 79.80570983886719, 42.665199279785156
],
'descriptor': {'dimensions': [3, 2, 1], 'dataType': 'float32'}
}
}
}
},
{
'name': 'slice float32 4D tensor',
'graph': {
'inputs': {
'sliceInput': {
'data': [
28.846250534057617, 97.95414733886719, -68.15961456298828,
14.978987693786621, 90.23090362548828, 76.59095764160156,
-24.556316375732422, 79.58749389648438, 65.21376037597656,
57.4397087097168, 74.41775512695312, -4.513182163238525,
0.5424534678459167, 80.44634246826172, 28.32765007019043,
74.02619171142578, -74.54559326171875, -27.306041717529297,
-70.42774200439453, 59.82632064819336, -58.46095275878906,
79.80570983886719, -9.857853889465332, 42.665199279785156
],
'descriptor': {'dimensions': [2, 2, 3, 2], 'dataType': 'float32'}
}
},
'operators': [{
'name': 'slice',
'arguments': [
{'input': 'sliceInput'}, {'starts': [1, 0, 2, 1]},
{'sizes': [1, 2, 1, 1]}
],
'outputs': 'sliceOutput'
}],
'expectedOutputs': {
'sliceOutput': {
'data': [-27.306041717529297, 42.665199279785156],
'descriptor': {'dimensions': [1, 2, 1, 1], 'dataType': 'float32'}
}
}
}
},
{
'name': 'slice float32 5D tensor',
'graph': {
'inputs': {
'sliceInput': {
'data': [
28.846250534057617, 97.95414733886719, -68.15961456298828,
14.978987693786621, 90.23090362548828, 76.59095764160156,
-24.556316375732422, 79.58749389648438, 65.21376037597656,
57.4397087097168, 74.41775512695312, -4.513182163238525,
0.5424534678459167, 80.44634246826172, 28.32765007019043,
74.02619171142578, -74.54559326171875, -27.306041717529297,
-70.42774200439453, 59.82632064819336, -58.46095275878906,
79.80570983886719, -9.857853889465332, 42.665199279785156
],
'descriptor': {'dimensions': [2, 2, 3, 2, 1], 'dataType': 'float32'}
}
},
'operators': [{
'name': 'slice',
'arguments': [
{'input': 'sliceInput'}, {'starts': [1, 0, 2, 1, 0]},
{'sizes': [1, 2, 1, 1, 1]}
],
'outputs': 'sliceOutput'
}],
'expectedOutputs': {
'sliceOutput': {
'data': [-27.306041717529297, 42.665199279785156],
'descriptor': {'dimensions': [1, 2, 1, 1, 1], 'dataType': 'float32'}
}
}
}
}
];
if (navigator.ml) {
sliceTests.forEach((test) => {
webnn_conformance_test(
buildGraphAndCompute, getSlicePrecisionTolerance, test);
});
} else {
test(() => assert_implements(navigator.ml, 'missing navigator.ml'));
}