chromium/third_party/blink/web_tests/external/wpt/webnn/conformance_tests/tan.https.any.js

// META: title=test WebNN API element-wise tan operation
// META: global=window,dedicatedworker
// META: variant=?cpu
// META: variant=?gpu
// META: variant=?npu
// META: script=../resources/utils.js
// META: timeout=long

'use strict';

// https://www.w3.org/TR/webnn/#api-mlgraphbuilder-unary
// Compute the tangent of the input tensor, element-wise.
//
// MLOperand tan(MLOperand input);


const getTanPrecisionTolerance = (graphResources) => {
  const toleranceValueDict = {float32: 1 / 1024, float16: 1 / 512};
  const expectedDataType =
      getExpectedDataTypeOfSingleOutput(graphResources.expectedOutputs);
  return {metricType: 'ATOL', value: toleranceValueDict[expectedDataType]};
};

const tanTests = [
  {
    'name': 'tan float32 0D scalar',
    'graph': {
      'inputs': {
        'tanInput': {
          'data': [52.69781494140625],
          'descriptor': {'dimensions': [], 'dataType': 'float32'}
        }
      },
      'operators': [{
        'name': 'tan',
        'arguments': [{'input': 'tanInput'}],
        'outputs': 'tanOutput'
      }],
      'expectedOutputs': {
        'tanOutput': {
          'data': [-0.8582430481910706],
          'descriptor': {'dimensions': [], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'tan float32 1D constant tensor',
    'graph': {
      'inputs': {
        'tanInput': {
          'data': [
            52.69781494140625,  70.06912994384766,   90.49689483642578,
            24.65666961669922,  11.66512680053711,   -50.95264434814453,
            40.320064544677734, -9.641122817993164,  -31.567750930786133,
            45.59520721435547,  -55.93085861206055,  -44.602970123291016,
            80.4539794921875,   -2.314880847930908,  -25.474767684936523,
            62.589454650878906, -70.94403076171875,  62.84861755371094,
            84.79766845703125,  -95.58502960205078,  15.552484512329102,
            -55.25654220581055, -26.884889602661133, 0.159261092543602
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'},
          'constant': true
        }
      },
      'operators': [{
        'name': 'tan',
        'arguments': [{'input': 'tanInput'}],
        'outputs': 'tanOutput'
      }],
      'expectedOutputs': {
        'tanOutput': {
          'data': [
            -0.8582430481910706,   1.410544753074646,    -0.6978657245635986,
            -0.5156278610229492,   -1.2633823156356812,  -0.8205758929252625,
            -0.5734118819236755,   -0.21978461742401123, -0.1530018001794815,
            -23.731182098388672,   0.7106066942214966,   -0.7149254679679871,
            -2.7969717979431152,   1.086239218711853,    -0.3560185432434082,
            -0.24726025760173798,  3.7865755558013916,   0.016766052693128586,
            -0.025338610634207726, -4.203672409057617,   -0.1567438244819641,
            3.495089292526245,     5.453553199768066,    0.16062140464782715
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'tan float32 1D tensor',
    'graph': {
      'inputs': {
        'tanInput': {
          'data': [
            52.69781494140625,  70.06912994384766,   90.49689483642578,
            24.65666961669922,  11.66512680053711,   -50.95264434814453,
            40.320064544677734, -9.641122817993164,  -31.567750930786133,
            45.59520721435547,  -55.93085861206055,  -44.602970123291016,
            80.4539794921875,   -2.314880847930908,  -25.474767684936523,
            62.589454650878906, -70.94403076171875,  62.84861755371094,
            84.79766845703125,  -95.58502960205078,  15.552484512329102,
            -55.25654220581055, -26.884889602661133, 0.159261092543602
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'}
        }
      },
      'operators': [{
        'name': 'tan',
        'arguments': [{'input': 'tanInput'}],
        'outputs': 'tanOutput'
      }],
      'expectedOutputs': {
        'tanOutput': {
          'data': [
            -0.8582430481910706,   1.410544753074646,    -0.6978657245635986,
            -0.5156278610229492,   -1.2633823156356812,  -0.8205758929252625,
            -0.5734118819236755,   -0.21978461742401123, -0.1530018001794815,
            -23.731182098388672,   0.7106066942214966,   -0.7149254679679871,
            -2.7969717979431152,   1.086239218711853,    -0.3560185432434082,
            -0.24726025760173798,  3.7865755558013916,   0.016766052693128586,
            -0.025338610634207726, -4.203672409057617,   -0.1567438244819641,
            3.495089292526245,     5.453553199768066,    0.16062140464782715
          ],
          'descriptor': {'dimensions': [24], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'tan float32 2D tensor',
    'graph': {
      'inputs': {
        'tanInput': {
          'data': [
            52.69781494140625,  70.06912994384766,   90.49689483642578,
            24.65666961669922,  11.66512680053711,   -50.95264434814453,
            40.320064544677734, -9.641122817993164,  -31.567750930786133,
            45.59520721435547,  -55.93085861206055,  -44.602970123291016,
            80.4539794921875,   -2.314880847930908,  -25.474767684936523,
            62.589454650878906, -70.94403076171875,  62.84861755371094,
            84.79766845703125,  -95.58502960205078,  15.552484512329102,
            -55.25654220581055, -26.884889602661133, 0.159261092543602
          ],
          'descriptor': {'dimensions': [4, 6], 'dataType': 'float32'}
        }
      },
      'operators': [{
        'name': 'tan',
        'arguments': [{'input': 'tanInput'}],
        'outputs': 'tanOutput'
      }],
      'expectedOutputs': {
        'tanOutput': {
          'data': [
            -0.8582430481910706,   1.410544753074646,    -0.6978657245635986,
            -0.5156278610229492,   -1.2633823156356812,  -0.8205758929252625,
            -0.5734118819236755,   -0.21978461742401123, -0.1530018001794815,
            -23.731182098388672,   0.7106066942214966,   -0.7149254679679871,
            -2.7969717979431152,   1.086239218711853,    -0.3560185432434082,
            -0.24726025760173798,  3.7865755558013916,   0.016766052693128586,
            -0.025338610634207726, -4.203672409057617,   -0.1567438244819641,
            3.495089292526245,     5.453553199768066,    0.16062140464782715
          ],
          'descriptor': {'dimensions': [4, 6], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'tan float32 3D tensor',
    'graph': {
      'inputs': {
        'tanInput': {
          'data': [
            52.69781494140625,  70.06912994384766,   90.49689483642578,
            24.65666961669922,  11.66512680053711,   -50.95264434814453,
            40.320064544677734, -9.641122817993164,  -31.567750930786133,
            45.59520721435547,  -55.93085861206055,  -44.602970123291016,
            80.4539794921875,   -2.314880847930908,  -25.474767684936523,
            62.589454650878906, -70.94403076171875,  62.84861755371094,
            84.79766845703125,  -95.58502960205078,  15.552484512329102,
            -55.25654220581055, -26.884889602661133, 0.159261092543602
          ],
          'descriptor': {'dimensions': [2, 3, 4], 'dataType': 'float32'}
        }
      },
      'operators': [{
        'name': 'tan',
        'arguments': [{'input': 'tanInput'}],
        'outputs': 'tanOutput'
      }],
      'expectedOutputs': {
        'tanOutput': {
          'data': [
            -0.8582430481910706,   1.410544753074646,    -0.6978657245635986,
            -0.5156278610229492,   -1.2633823156356812,  -0.8205758929252625,
            -0.5734118819236755,   -0.21978461742401123, -0.1530018001794815,
            -23.731182098388672,   0.7106066942214966,   -0.7149254679679871,
            -2.7969717979431152,   1.086239218711853,    -0.3560185432434082,
            -0.24726025760173798,  3.7865755558013916,   0.016766052693128586,
            -0.025338610634207726, -4.203672409057617,   -0.1567438244819641,
            3.495089292526245,     5.453553199768066,    0.16062140464782715
          ],
          'descriptor': {'dimensions': [2, 3, 4], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'tan float32 4D tensor',
    'graph': {
      'inputs': {
        'tanInput': {
          'data': [
            52.69781494140625,  70.06912994384766,   90.49689483642578,
            24.65666961669922,  11.66512680053711,   -50.95264434814453,
            40.320064544677734, -9.641122817993164,  -31.567750930786133,
            45.59520721435547,  -55.93085861206055,  -44.602970123291016,
            80.4539794921875,   -2.314880847930908,  -25.474767684936523,
            62.589454650878906, -70.94403076171875,  62.84861755371094,
            84.79766845703125,  -95.58502960205078,  15.552484512329102,
            -55.25654220581055, -26.884889602661133, 0.159261092543602
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'}
        }
      },
      'operators': [{
        'name': 'tan',
        'arguments': [{'input': 'tanInput'}],
        'outputs': 'tanOutput'
      }],
      'expectedOutputs': {
        'tanOutput': {
          'data': [
            -0.8582430481910706,   1.410544753074646,    -0.6978657245635986,
            -0.5156278610229492,   -1.2633823156356812,  -0.8205758929252625,
            -0.5734118819236755,   -0.21978461742401123, -0.1530018001794815,
            -23.731182098388672,   0.7106066942214966,   -0.7149254679679871,
            -2.7969717979431152,   1.086239218711853,    -0.3560185432434082,
            -0.24726025760173798,  3.7865755558013916,   0.016766052693128586,
            -0.025338610634207726, -4.203672409057617,   -0.1567438244819641,
            3.495089292526245,     5.453553199768066,    0.16062140464782715
          ],
          'descriptor': {'dimensions': [2, 2, 2, 3], 'dataType': 'float32'}
        }
      }
    }
  },
  {
    'name': 'tan float32 5D tensor',
    'graph': {
      'inputs': {
        'tanInput': {
          'data': [
            52.69781494140625,  70.06912994384766,   90.49689483642578,
            24.65666961669922,  11.66512680053711,   -50.95264434814453,
            40.320064544677734, -9.641122817993164,  -31.567750930786133,
            45.59520721435547,  -55.93085861206055,  -44.602970123291016,
            80.4539794921875,   -2.314880847930908,  -25.474767684936523,
            62.589454650878906, -70.94403076171875,  62.84861755371094,
            84.79766845703125,  -95.58502960205078,  15.552484512329102,
            -55.25654220581055, -26.884889602661133, 0.159261092543602
          ],
          'descriptor': {'dimensions': [2, 1, 4, 1, 3], 'dataType': 'float32'}
        }
      },
      'operators': [{
        'name': 'tan',
        'arguments': [{'input': 'tanInput'}],
        'outputs': 'tanOutput'
      }],
      'expectedOutputs': {
        'tanOutput': {
          'data': [
            -0.8582430481910706,   1.410544753074646,    -0.6978657245635986,
            -0.5156278610229492,   -1.2633823156356812,  -0.8205758929252625,
            -0.5734118819236755,   -0.21978461742401123, -0.1530018001794815,
            -23.731182098388672,   0.7106066942214966,   -0.7149254679679871,
            -2.7969717979431152,   1.086239218711853,    -0.3560185432434082,
            -0.24726025760173798,  3.7865755558013916,   0.016766052693128586,
            -0.025338610634207726, -4.203672409057617,   -0.1567438244819641,
            3.495089292526245,     5.453553199768066,    0.16062140464782715
          ],
          'descriptor': {'dimensions': [2, 1, 4, 1, 3], 'dataType': 'float32'}
        }
      }
    }
  }
];

if (navigator.ml) {
  tanTests.forEach((test) => {
    webnn_conformance_test(
        buildGraphAndCompute, getTanPrecisionTolerance, test);
  });
} else {
  test(() => assert_implements(navigator.ml, 'missing navigator.ml'));
}