<!doctype html>
<html>
<head>
<title>Test Biquad Tail-Time</title>
<script src="../../resources/testharness.js"></script>
<script src="../../resources/testharnessreport.js"></script>
<script src="../resources/audit-util.js"></script>
<script src="../resources/audit.js"></script>
<script src="../resources/biquad-filters.js"></script>
<script src="test-tail-time.js"></script>
</head>
<body>
<script>
let audit = Audit.createTaskRunner();
let sampleRate = 16384;
let renderSeconds = 1;
let renderFrames = renderSeconds * sampleRate;
// For a highpass filter:
// b0 = (1+cos(w0))/2
// b1 = -(1+cos(w0))
// b2 = (1+cos(w0))/2
// a0 = 1 + alpha
// a1 = -2*cos(w0)
// a2 = 1 - alpha
//
// where alpha = sin(w0)/(2*10^(Q/20)) and w0 = 2*%pi*f0/Fs.
//
// Equivalently a1 = -2*cos(w0)/(1+alpha), a2 = (1-alpha)/(1+alpha). The
// poles of this filter are at
//
// cos(w0)/(1+alpha) +/- sqrt(alpha^2-sin(w0)^2)/(1+alpha)
//
// But alpha^2-sin(w0)^2 = sin(w0)^2*(1/4/10^(Q/10) - 1). Thus the poles
// are complex if 1/4/10^(Q/10) < 1; real distinct if 1/4/10^(Q/10) > 1;
// and repeated if 1/4/10^(Q/10) = 1.
// Array of tests to run. |descripton| is the task description for
// audit.define. |parameters| is option for |testTailTime|.
let tests = [
{
descripton:
{label: 'hpf-complex-roots', description: 'complex roots'},
parameters: {
prefix: 'HPF complex roots',
filterOptions: {type: 'highpass', Q: 40, frequency: sampleRate / 4},
// Node computed tail frame is 2079.4, which matches the actual tail
// frome so output should be exactly 0.
threshold: 0
}
},
{
descripton: {
label: 'hpf-real-distinct-roots',
description: 'real distinct roots'
},
parameters: {
prefix: 'HPF real distinct roots',
filterOptions:
{type: 'highpass', Q: -50, frequency: sampleRate / 8},
// With these filter parameters, the real tail time is 408, but
// the node overestimates it to be 2367. Thus, the actual tail
// frames won't be exactly zero.
threshold: 1 / 32768
}
},
{
descripton:
{label: 'hpf-repeated-root', description: 'repeated real root'},
parameters: {
prefix: 'HPF repeated roots (approximately)',
// For a repeated root, we need 1/4/10^(Q/10) = 1, or Q =
// -10*log(4)/log(10). This isn't exactly representable as a float,
// so the roots might not actually be repeated. In fact the roots
// are complex at 6.40239e-5*exp(i*1.570596).
filterOptions: {
type: 'highpass',
Q: -10 * Math.log10(4),
frequency: sampleRate / 4
},
// Node computed tail frame is 2.9, which matches the actual tail
// frome so output should be exactly 0.
threshold: 0
}
},
{
descripton: {label: 'hpf-real-roots-2', description: 'complex roots'},
parameters: {
prefix: 'HPF repeated roots 2',
// This tests an extreme case where approximate impulse response is
// h(n) = C*r^(n-1) and C < 1/32768. Thus, the impulse response is
// always less than the response threshold of 1/32768.
filterOptions:
{type: 'highpass', Q: -100, frequency: sampleRate / 4},
// Node computed tail frame is 0, which matches the actual tail
// frame so output should be exactly 0.
threshold: 0
}
}
];
// Define an appropriate task for each test.
tests.forEach(entry => {
audit.define(entry.descripton, (task, should) => {
let context = new OfflineAudioContext(1, renderFrames, sampleRate);
testTailTime(should, context, entry.parameters)
.then(() => task.done());
});
});
audit.run();
</script>
</body>
</html>