<!DOCTYPE html>
<html>
<head>
<title>
Test Tail Time for IIRFilter
</title>
<script src="../../resources/testharness.js"></script>
<script src="../../resources/testharnessreport.js"></script>
<script src="../resources/audit-util.js"></script>
<script src="../resources/audit.js"></script>
</head>
<body>
<script id="layout-test-code">
let audit = Audit.createTaskRunner();
let renderQuantumFrames = 128;
// Must be a power of two to eliminate round-off differences between thsi
// JS code and the WebAudio implementation. Otherwise, the sample rate is
// arbitrary.
let sampleRate = 16384;
// Fairly arbitrary, but should be long enough so that the node propagates
// silence before the end of the offline context.
let renderDuration = 1;
audit.define('1-pole tail', (task, should) => {
let pole = 0.99;
let IIROptions = {feedforward: [1], feedback: [1, -pole]};
// For the given filter, we can actually compute where the tail
// begins. The impulse response for the 1-pole filter is h(n) =
// a^n, where a = 0.9. The tail here starts when a^n < eps =
// 1/32768. So n > log(eps)/log(a), or 98.7. Round that up to the
// nearest render quantum frames.
let tail = Math.ceil(Math.log(1 / 32768) / Math.log(pole));
runTest(should, IIROptions, tail, '1-pole').then(() => task.done());
});
audit.define('2 real pole test', (task, should) => {
// Simple example of a 2-pole IIR filter where both poles are real.
// We arbitrarily select a pole at 9.99 and one at -0.5. The IIRFilter
// is then
// 1 / ((z-0.99) * (z + 0.5))
// = 1/(z^2-0.49z-0.495)
// = z^-2/(1-0.49/z-0.495/z^2)
let IIROptions = {feedforward: [0, 0, 1], feedback: [1, -0.49, -0.495]};
// For this particular filter, we can analytically compute the impulse
// response using partical fractios:
//
// 1 / ((z-0.99) * (z + 0.5))
// = 1/(-0.5-0.99)/(z + 0.5) - 1/(-0.5-0.99)/(z - 0.99)
// = 1/1.49*(1/(z-0.99) - 1/(z+0.5))
// = 1/1.49*[1/z*sum(.99^n/z^n,n,0,inf)
// - 1/z*sum((-0.5)^n/z^n,n,0,inf)]
// = 1/1.49/z*sum((0.99^n-(-0.5)^n)/z^n)
//
// So the tail begins when 1/1.49*(0.99^n-(-0.5)^n) < 1/32768. This can
// be solved numerically to give n = 995.
let tail = 995;
tail = renderQuantumFrames * Math.ceil(tail / renderQuantumFrames);
runTest(should, IIROptions, tail, '2 real poles')
.then(() => task.done());
});
audit.define('2 complex poles', (task, should) => {
// Simple example of a 2-pole IIR filter where both poles are complex
// conjugates. In this case, the poles will be r*exp(+/-i*theta) where
// r = 0.99 and theta = 0.01. The filter is then
//
// 1/(z^2-2*r*cos(theta) + r^2)
// = z^(-2)/(1-2*r*cos(theta)/z + r^2/z^2)
let r = 0.99;
let theta = 0.01;
let IIROptions = {
feedforward: [0, 0, 1],
feedback: [1, -2 * r * Math.cos(theta), r * r]
};
// Again, we can use partial fractions as for 2 real pole case to get an
// analytically solution for the impulse response. For simplicity, let
// p1 = r*exp(i*theta), p2 = r*exp(-i*theta). Then:
//
// 1/(z^2-2*r*cos(theta) + r^2)
// = 1/(z-p1)/(z-p2)
// = 1/(p2-p1)*[1/(z-p2) - 1/(z-p1)]
// = 1/(p2-p1)*[1/z*sum(p2^n/z^n) - 1/z*sum(p1^n/z^n)]
// = 1/(p2-p1)/z*sum((p2^n-p1^n)/z^n)
//
// So the tail begins when
// 1/32768 > |1/(p2-p1)*(p2^n-p1^n)|
// = 1/(r*sin(theta))*|r^n*(exp(-i*theta*n)-exp(i*theta*n))|
// = 1/(2*r*sin(theta))*(2*r^n*|sin(theta*n)|);
// = r^(n-1)*|sin(theta*n)|/sin(theta)
//
// This can be solved numerically to for n;
let tail = 1474.256;
tail = renderQuantumFrames * Math.ceil(tail / renderQuantumFrames);
runTest(should, IIROptions, tail, '2 complex poles')
.then(() => task.done());
});
audit.define('repeated poles', (task, should) => {
// Two repeated roots. Let p be the repeated pole. Then the filter is
//
// 1/(z-p)^2
// = z^(-2)/(1-p/z)^2
// = z^(-2)/(1-2*p/z+p*p/z^2)
let pole = 0.99;
let IIROptions = {
feedforward: [0, 0, 1],
feedback: [1, -2 * pole, pole * pole]
};
// We can analytically compute the impulse response of this filter to be
//
// 1/z^2*sum(p^n*(n+1)/z^n, n, 0, inf)
// = sum(p^n*(n+1)/z^(n+2), n, 0, inf)
// = 1/p^2*sum((p^k*(k-1))/z^k,k,2,inf))
//
// Therefore the tail starts when p^(k-2)*(k-1) < 1/32768. We can solve
// this numerically to be 1781.213;
let tail = 1781.213;
runTest(should, IIROptions, tail, '2 repeated poles')
.then(() => task.done());
});
audit.define('4-th order', (task, should) => {
// Test consistency of tail times between a 4-th order direct IIR filter
// and the equivalent cascade of second-order sections. The first
// channel of the output is the cascaded biquad, and the second channel
// is the 4-th order equivalent.
let context =
new OfflineAudioContext(2, renderDuration * sampleRate, sampleRate);
let src = new AudioBufferSourceNode(
context, {buffer: createImpulseBuffer(context, 1)});
// This is a 4-th order lowpass elliptic filter designed using
// http://rtoy.github.io/webaudio-hacks/more/filter-design/filter-design.html.
// The sample rate is 16384 Hz with a passband at 3600 Hz with a 0.25 dB
// attenuation, and a stopband at 4800 Hz, with a stopband attenuation
// of 30 dB. (Nothing really special except that this gives a 4-th order
// filter).
let f0 = context.createIIRFilter(
[0.6410686464424084, 0.2607836369670137, 0.6410686464424084],
[1, -0.2287413068432929, 0.7716622366951231]);
let f1 = context.createIIRFilter(
[0.21283904239866536, 0.3184888523034876, 0.21283904239866536],
[1, -0.4686913542990081, 0.21285829139982618]);
// The poles for f0 are 0.1143706534216465 +/- 0.8709658950447078*i or
// 0.8784430753868592*%e^(+/-1.440228658066206*%i),
//
// The poles for f1 are 0.2343456771495041 +/- 0.3974171548903829*i or
// 0.4613656807780854*%e^(+/-1.038005727602151*%i.
//
// Thus, the tail time for f0 is approximately 80, but this is an
// approximation since we didn't include the affect of the numerator.
// Round this up to the next render to get an actual tail time of 128.
//
// Similarly, for f0, the tail time is 14.3. Thus, the actual tail time
// is alos 128 for this filter.
//
// Since these biquads are cascaded, the total tail time for both is the
// sum or 256 frames. However, the tail actually ends two render quanta
// after this for a total of 512 frames.
let biquadTailEnd = 512;
// The equivalent 4-th order filter created multiplying the f0 and f1
// coefficients together appropriately.
let f = context.createIIRFilter(
[
0.136444436820611, 0.259678157018493, 0.355945554878375,
0.259678157018493, 0.136444436820611
],
[
1.000000000000000, -0.697432661142301, 1.091729600983457,
-0.410360902525266, 0.164254705240692
]);
let merger = context.createChannelMerger(2);
merger.connect(context.destination);
src.connect(f0).connect(f1).connect(merger, 0, 0);
src.connect(f).connect(merger, 0, 1);
src.start();
context.startRendering()
.then(renderedBuffer => {
// c0 = cascaded biquads
// c1 = 4-th order filter
let c0 = renderedBuffer.getChannelData(0);
let c1 = renderedBuffer.getChannelData(1);
// Sanity check: The two filters should have the same output
// within some rounding error.
should(
c0.slice(0, biquadTailEnd),
'Filter outputs[0:' + (biquadTailEnd - 1) + ']')
.beCloseToArray(
c1.slice(0, biquadTailEnd),
{absoluteThreshold: 1.4902e-8});
should(
c0.slice(biquadTailEnd),
'Filter outputs[' + biquadTailEnd + ':]')
.beEqualToArray(c1.slice(biquadTailEnd));
// Verify that after the tail time, the outputs are zero, and not
// before for both the biquads and 4-th order filters.
should(
c0.slice(0, biquadTailEnd),
'cascaded biquad output[0:' + (biquadTailEnd - 1) + ']')
.notBeConstantValueOf(0);
should(
c0.slice(biquadTailEnd),
'cascaded biquad output[' + biquadTailEnd + ':]')
.beConstantValueOf(0);
should(
c1.slice(0, biquadTailEnd),
'4-th order output[0:' + (biquadTailEnd - 1) + ']')
.notBeConstantValueOf(0);
should(
c1.slice(biquadTailEnd),
'4-th order output[' + biquadTailEnd + ':]')
.beConstantValueOf(0);
})
.then(() => task.done());
});
function runTest(should, IIROptions, tailFrames, prefix) {
let context =
new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
let src = new AudioBufferSourceNode(
context, {buffer: createImpulseBuffer(context, 1)});
let iir = new IIRFilterNode(context, IIROptions);
src.connect(iir).connect(context.destination);
src.start();
return context.startRendering().then(renderedBuffer => {
let audio = renderedBuffer.getChannelData(0);
// Round up the tailFrames to the nearest render quantum.
let tailQuantum =
renderQuantumFrames * Math.ceil(tailFrames / renderQuantumFrames);
let tailEndFrame = tailQuantum + 2 * renderQuantumFrames;
should(tailEndFrame, prefix + ': tail end frame')
.beLessThanOrEqualTo(context.length);
// Clamp to the render duration so we don't go off the end.
tailEndFrame = Math.min(tailEndFrame, context.length);
for (let k = 0; k < tailEndFrame; k += renderQuantumFrames) {
should(
audio.slice(k, k + renderQuantumFrames),
prefix + ': output[' + k + ':' + (k + renderQuantumFrames - 1) +
']')
.notBeConstantValueOf(0);
}
if (tailEndFrame < context.length) {
// All frames after should be zero because we're propagating
// silence.
should(
audio.slice(tailEndFrame),
'output[' + tailEndFrame + ':' + (context.length - 1) + ']')
.beConstantValueOf(0);
}
});
}
audit.run();
</script>
</body>
</html>