// FFT routines. Obtained from
// https://github.com/rtoy/js-hacks/blob/master/fft/fft-r2-nn.js.
//
// Create an FFT object of order |order|. This will
// compute forward and inverse FFTs of length 2^|order|.
function FFT(order) {
if (order <= 1) {
throw new this.FFTException(order);
}
this.order = order;
this.N = 1 << order;
this.halfN = 1 << (order - 1);
// Internal variables needed for computing each stage of the FFT.
this.pairsInGroup = 0;
this.numberOfGroups = 0;
this.distance = 0;
this.notSwitchInput = 0;
// Work arrays
this.aReal = new Float32Array(this.N);
this.aImag = new Float32Array(this.N);
this.debug = 0;
// Twiddle tables for the FFT.
this.twiddleCos = new Float32Array(this.N);
this.twiddleSin = new Float32Array(this.N);
let omega = -2 * Math.PI / this.N;
for (let k = 0; k < this.N; ++k) {
this.twiddleCos[k] = Math.fround(Math.cos(omega * k));
this.twiddleSin[k] = Math.fround(Math.sin(omega * k));
}
}
FFT.prototype.FFTException =
function(order) {
this.value = order;
this.message = 'Order must be greater than 1: ';
this.toString = function() {
return this.message + this.value;
};
}
// Core routine that does one stage of the FFT, implementing all of
// the butterflies for that stage.
FFT.prototype.FFTRadix2Core =
function(aReal, aImag, bReal, bImag) {
let index = 0;
for (let k = 0; k < this.numberOfGroups; ++k) {
let jfirst = 2 * k * this.pairsInGroup;
let jlast = jfirst + this.pairsInGroup - 1;
let jtwiddle = k * this.pairsInGroup;
let wr = this.twiddleCos[jtwiddle];
let wi = this.twiddleSin[jtwiddle];
for (let j = jfirst; j <= jlast; ++j) {
// temp = w * a[j + distance]
let idx = j + this.distance;
let tr = wr * aReal[idx] - wi * aImag[idx];
let ti = wr * aImag[idx] + wi * aReal[idx];
bReal[index] = aReal[j] + tr;
bImag[index] = aImag[j] + ti;
bReal[index + this.halfN] = aReal[j] - tr;
bImag[index + this.halfN] = aImag[j] - ti;
++index;
}
}
}
// Forward out-of-place complex FFT.
//
// Computes the forward FFT, b, of a complex vector x:
//
// b[k] = sum(x[n] * W^(k*n), n, 0, N - 1), k = 0, 1,..., N-1
//
// where
// N = length of x, which must be a power of 2 and
// W = exp(-2*i*pi/N)
//
// x = |xr| + i*|xi|
// b = |bReal| + i*|bImag|
FFT.prototype.fft =
function(xr, xi, bReal, bImag) {
this.pairsInGroup = this.halfN;
this.numberOfGroups = 1;
this.distance = this.halfN;
this.notSwitchInput = true;
// Arrange it so that the last iteration puts the desired output
// in bReal/bImag.
if (this.order & 1 == 1) {
this.FFTRadix2Core(xr, xi, bReal, bImag);
this.notSwitchInput = !this.notSwitchInput;
} else {
this.FFTRadix2Core(xr, xi, this.aReal, this.aImag);
}
this.pairsInGroup >>= 1;
this.numberOfGroups <<= 1;
this.distance >>= 1;
while (this.numberOfGroups < this.N) {
if (this.notSwitchInput) {
this.FFTRadix2Core(this.aReal, this.aImag, bReal, bImag);
} else {
this.FFTRadix2Core(bReal, bImag, this.aReal, this.aImag);
}
this.notSwitchInput = !this.notSwitchInput;
this.pairsInGroup >>= 1;
this.numberOfGroups <<= 1;
this.distance >>= 1;
}
}
// Core routine that does one stage of the FFT, implementing all of
// the butterflies for that stage. This is identical to
// FFTRadix2Core, except the twiddle factor, w, is the conjugate.
FFT.prototype.iFFTRadix2Core =
function(aReal, aImag, bReal, bImag) {
let index = 0;
for (let k = 0; k < this.numberOfGroups; ++k) {
let jfirst = 2 * k * this.pairsInGroup;
let jlast = jfirst + this.pairsInGroup - 1;
let jtwiddle = k * this.pairsInGroup;
let wr = this.twiddleCos[jtwiddle];
let wi = -this.twiddleSin[jtwiddle];
for (let j = jfirst; j <= jlast; ++j) {
// temp = w * a[j + distance]
let idx = j + this.distance;
let tr = wr * aReal[idx] - wi * aImag[idx];
let ti = wr * aImag[idx] + wi * aReal[idx];
bReal[index] = aReal[j] + tr;
bImag[index] = aImag[j] + ti;
bReal[index + this.halfN] = aReal[j] - tr;
bImag[index + this.halfN] = aImag[j] - ti;
++index;
}
}
}
// Inverse out-of-place complex FFT.
//
// Computes the inverse FFT, b, of a complex vector x:
//
// b[k] = sum(x[n] * W^(-k*n), n, 0, N - 1), k = 0, 1,..., N-1
//
// where
// N = length of x, which must be a power of 2 and
// W = exp(-2*i*pi/N)
//
// x = |xr| + i*|xi|
// b = |bReal| + i*|bImag|
//
// Note that ifft(fft(x)) = N * x. To get x, call ifftScale to
// scale the output of the ifft appropriately.
FFT.prototype.ifft =
function(xr, xi, bReal, bImag) {
this.pairsInGroup = this.halfN;
this.numberOfGroups = 1;
this.distance = this.halfN;
this.notSwitchInput = true;
// Arrange it so that the last iteration puts the desired output
// in bReal/bImag.
if (this.order & 1 == 1) {
this.iFFTRadix2Core(xr, xi, bReal, bImag);
this.notSwitchInput = !this.notSwitchInput;
} else {
this.iFFTRadix2Core(xr, xi, this.aReal, this.aImag);
}
this.pairsInGroup >>= 1;
this.numberOfGroups <<= 1;
this.distance >>= 1;
while (this.numberOfGroups < this.N) {
if (this.notSwitchInput) {
this.iFFTRadix2Core(this.aReal, this.aImag, bReal, bImag);
} else {
this.iFFTRadix2Core(bReal, bImag, this.aReal, this.aImag);
}
this.notSwitchInput = !this.notSwitchInput;
this.pairsInGroup >>= 1;
this.numberOfGroups <<= 1;
this.distance >>= 1;
}
}
//
// Scales the IFFT by 1/N, done in place.
FFT.prototype.ifftScale =
function(xr, xi) {
let factor = 1 / this.N;
for (let k = 0; k < this.N; ++k) {
xr[k] *= factor;
xi[k] *= factor;
}
}
// First stage for the RFFT. Basically the same as
// FFTRadix2Core, but we assume aImag is 0, and adjust
// the code accordingly.
FFT.prototype.RFFTRadix2CoreStage1 =
function(aReal, bReal, bImag) {
let index = 0;
for (let k = 0; k < this.numberOfGroups; ++k) {
let jfirst = 2 * k * this.pairsInGroup;
let jlast = jfirst + this.pairsInGroup - 1;
let jtwiddle = k * this.pairsInGroup;
let wr = this.twiddleCos[jtwiddle];
let wi = this.twiddleSin[jtwiddle];
for (let j = jfirst; j <= jlast; ++j) {
// temp = w * a[j + distance]
let idx = j + this.distance;
let tr = wr * aReal[idx];
let ti = wi * aReal[idx];
bReal[index] = aReal[j] + tr;
bImag[index] = ti;
bReal[index + this.halfN] = aReal[j] - tr;
bImag[index + this.halfN] = -ti;
++index;
}
}
}
// Forward Real FFT. Like fft, but the signal is
// assumed to be real, so the imaginary part is not
// supplied. The output, however, is still the same
// and is returned in two arrays. (This could be
// optimized to use less storage, both internally
// and for the output, but we don't do that.)
FFT.prototype.rfft = function(xr, bReal, bImag) {
this.pairsInGroup = this.halfN;
this.numberOfGroups = 1;
this.distance = this.halfN;
this.notSwitchInput = true;
// Arrange it so that the last iteration puts the desired output
// in bReal/bImag.
if (this.order & 1 == 1) {
this.RFFTRadix2CoreStage1(xr, bReal, bImag);
this.notSwitchInput = !this.notSwitchInput;
} else {
this.RFFTRadix2CoreStage1(xr, this.aReal, this.aImag);
}
this.pairsInGroup >>= 1;
this.numberOfGroups <<= 1;
this.distance >>= 1;
while (this.numberOfGroups < this.N) {
if (this.notSwitchInput) {
this.FFTRadix2Core(this.aReal, this.aImag, bReal, bImag);
} else {
this.FFTRadix2Core(bReal, bImag, this.aReal, this.aImag);
}
this.notSwitchInput = !this.notSwitchInput;
this.pairsInGroup >>= 1;
this.numberOfGroups <<= 1;
this.distance >>= 1;
}
}