function createGraph(options) {
let context = new OfflineAudioContext(1, renderFrames, sampleRate);
// Use a default sawtooth wave for the test signal. We want something is a
// bit more harmonic content than a sine wave, but otherwise it doesn't
// really matter.
let src = context.createOscillator();
src.type = 'sawtooth';
let analyser = context.createAnalyser();
analyser.fftSize = Math.pow(2, options.order);
analyser.smoothingTimeConstant = options.smoothing || 0;
analyser.minDecibels = options.minDecibels || analyser.minDecibels;
// Connect the nodes together and start the source.
src.connect(analyser);
analyser.connect(context.destination);
src.start();
return {
context: context,
analyser: analyser,
};
}
// Apply the windowing function, in place.
function applyWindow(timeData) {
let length = timeData.length;
let alpha = 0.16;
let a0 = (1 - alpha) / 2;
let a1 = 0.5;
let a2 = alpha / 2;
let omega = 2 * Math.PI / length;
for (let k = 0; k < length; ++k) {
let w = a0 - a1 * Math.cos(omega * k) + a2 * Math.cos(2 * omega * k);
timeData[k] *= w;
}
}
// Compute the FFT magnitude of |timeData|.
function computeFFTMagnitude(timeData, order) {
// Compute the expected frequency response. First, apply the window.
// Compute the forward FFT.
applyWindow(timeData);
let fft = new FFT(order);
let fftSize = Math.pow(2, order);
let fftr = new Float32Array(fftSize);
let ffti = new Float32Array(fftSize);
fft.rfft(timeData, fftr, ffti);
// Compute the magnitude of the expected result.
let expected = new Float32Array(fftSize / 2);
for (let k = 0; k < expected.length; ++k)
expected[k] = Math.hypot(fftr[k], ffti[k]) / fftSize;
return expected;
}
// Convert dB value to linear value.
function dbToLinear(x) {
return Math.pow(10, x / 20);
}
// Convert linear value to dB.
function linearToDb(x) {
return 20 * Math.log10(x);
}
// Clip the FFT magnitude so that values below |limit| are set to |limit|. The
// FFT must be in dB. The input array is clipped in place.
function clipMagnitude(limit, x) {
for (let k = 0; k < x.length; ++k)
x[k] = Math.max(limit, x[k])
}
// Compare the float frequency data in dB, |freqData|, against the expected
// value, |expectedFreq|. |options| is a dictionary with the property
// |floatRelError| for setting the comparison threshold and |precision| for
// setting the printed precision. Setting |precision| to |undefined| means
// printing all digits. If |options.precision} doesn't exist, use a default
// precision.
function compareFloatFreq(message, freqData, expectedFreq, should, options) {
// Any dB values below -100 is pretty much in the noise due to round-off in
// the (single-precisiion) FFT, so just clip those values to -100.
let lowerLimit = -100;
clipMagnitude(lowerLimit, expectedFreq);
let actual = freqData;
clipMagnitude(lowerLimit, actual);
let success = should(actual, message).beCloseToArray(expectedFreq, {
relativeThreshold: options.floatRelError || 0,
});
return {success: success, expected: expectedFreq};
}
// Apply FFT smoothing, accumulating the result in |oldFreqData| with the new
// data in |newFreqData|. The smoothing time constant is |smoothingTime|
function smoothFFT(oldFreqData, newFreqData, smoothingTime) {
for (let k = 0; k < oldFreqData.length; ++k) {
let value =
smoothingTime * oldFreqData[k] + (1 - smoothingTime) * newFreqData[k];
oldFreqData[k] = value;
}
}
// Convert the float frequency data, |floatFreqData|, to byte values using the
// dB limits |minDecibels| and |maxDecibels|. The new byte array is returned.
function convertFloatToByte(floatFreqData, minDecibels, maxDecibels) {
let scale = 255 / (maxDecibels - minDecibels);
return floatFreqData.map(function(x) {
let value = Math.floor(scale * (x - minDecibels));
return Math.min(255, Math.max(0, value));
});
}