/**
* @license
* Copyright The Closure Library Authors.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @fileoverview Base class for SHA-2 cryptographic hash.
*
* Variable names follow the notation in FIPS PUB 180-3:
* http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf.
*
* Some code similar to SHA1 are borrowed from sha1.js written by mschilder@.
*/
goog.provide('goog.crypt.Sha2');
goog.require('goog.array');
goog.require('goog.asserts');
goog.require('goog.crypt.Hash');
/**
* SHA-2 cryptographic hash constructor.
* This constructor should not be used directly to create the object. Rather,
* one should use the constructor of the sub-classes.
* @param {number} numHashBlocks The size of output in 16-byte blocks.
* @param {!Array<number>} initHashBlocks The hash-specific initialization
* @constructor
* @extends {goog.crypt.Hash}
* @struct
*/
goog.crypt.Sha2 = function(numHashBlocks, initHashBlocks) {
'use strict';
goog.crypt.Sha2.base(this, 'constructor');
this.blockSize = goog.crypt.Sha2.BLOCKSIZE_;
/**
* A chunk holding the currently processed message bytes. Once the chunk has
* 64 bytes, we feed it into computeChunk_ function and reset this.chunk_.
* @private {!Array<number>|!Uint8Array}
*/
this.chunk_ = goog.global['Uint8Array'] ? new Uint8Array(this.blockSize) :
new Array(this.blockSize);
/**
* Current number of bytes in this.chunk_.
* @private {number}
*/
this.inChunk_ = 0;
/**
* Total number of bytes in currently processed message.
* @private {number}
*/
this.total_ = 0;
/**
* Holds the previous values of accumulated hash a-h in the computeChunk_
* function.
* @private {!Array<number>|!Int32Array}
*/
this.hash_ = [];
/**
* The number of output hash blocks (each block is 4 bytes long).
* @private {number}
*/
this.numHashBlocks_ = numHashBlocks;
/**
* @private {!Array<number>} initHashBlocks
*/
this.initHashBlocks_ = initHashBlocks;
/**
* Temporary array used in chunk computation. Allocate here as a
* member rather than as a local within computeChunk_() as a
* performance optimization to reduce the number of allocations and
* reduce garbage collection.
* @private {!Int32Array|!Array<number>}
*/
this.w_ = goog.global['Int32Array'] ? new Int32Array(64) : new Array(64);
if (goog.crypt.Sha2.Kx_ === undefined) {
// This is the first time this constructor has been called.
if (goog.global['Int32Array']) {
// Typed arrays exist
goog.crypt.Sha2.Kx_ = new Int32Array(goog.crypt.Sha2.K_);
} else {
// Typed arrays do not exist
goog.crypt.Sha2.Kx_ = goog.crypt.Sha2.K_;
}
}
this.reset();
};
goog.inherits(goog.crypt.Sha2, goog.crypt.Hash);
/**
* The block size
* @private {number}
*/
goog.crypt.Sha2.BLOCKSIZE_ = 512 / 8;
/**
* Contains data needed to pad messages less than BLOCK_SIZE_ bytes.
* @private {!Array<number>}
*/
goog.crypt.Sha2.PADDING_ = goog.array.concat(
128, goog.array.repeat(0, goog.crypt.Sha2.BLOCKSIZE_ - 1));
/** @override */
goog.crypt.Sha2.prototype.reset = function() {
'use strict';
this.inChunk_ = 0;
this.total_ = 0;
this.hash_ = goog.global['Int32Array'] ?
new Int32Array(this.initHashBlocks_) :
goog.array.clone(this.initHashBlocks_);
};
/**
* Helper function to compute the hashes for a given 512-bit message chunk.
* @private
*/
goog.crypt.Sha2.prototype.computeChunk_ = function() {
'use strict';
var chunk = this.chunk_;
goog.asserts.assert(chunk.length == this.blockSize);
var rounds = 64;
// Divide the chunk into 16 32-bit-words.
var w = this.w_;
var index = 0;
var offset = 0;
while (offset < chunk.length) {
w[index++] = (chunk[offset] << 24) | (chunk[offset + 1] << 16) |
(chunk[offset + 2] << 8) | (chunk[offset + 3]);
offset = index * 4;
}
// Extend the w[] array to be the number of rounds.
for (var i = 16; i < rounds; i++) {
var w_15 = w[i - 15] | 0;
var s0 = ((w_15 >>> 7) | (w_15 << 25)) ^ ((w_15 >>> 18) | (w_15 << 14)) ^
(w_15 >>> 3);
var w_2 = w[i - 2] | 0;
var s1 = ((w_2 >>> 17) | (w_2 << 15)) ^ ((w_2 >>> 19) | (w_2 << 13)) ^
(w_2 >>> 10);
// As a performance optimization, construct the sum a pair at a time
// with casting to integer (bitwise OR) to eliminate unnecessary
// double<->integer conversions.
var partialSum1 = ((w[i - 16] | 0) + s0) | 0;
var partialSum2 = ((w[i - 7] | 0) + s1) | 0;
w[i] = (partialSum1 + partialSum2) | 0;
}
var a = this.hash_[0] | 0;
var b = this.hash_[1] | 0;
var c = this.hash_[2] | 0;
var d = this.hash_[3] | 0;
var e = this.hash_[4] | 0;
var f = this.hash_[5] | 0;
var g = this.hash_[6] | 0;
var h = this.hash_[7] | 0;
for (var i = 0; i < rounds; i++) {
var S0 = ((a >>> 2) | (a << 30)) ^ ((a >>> 13) | (a << 19)) ^
((a >>> 22) | (a << 10));
var maj = ((a & b) ^ (a & c) ^ (b & c));
var t2 = (S0 + maj) | 0;
var S1 = ((e >>> 6) | (e << 26)) ^ ((e >>> 11) | (e << 21)) ^
((e >>> 25) | (e << 7));
var ch = ((e & f) ^ ((~e) & g));
// As a performance optimization, construct the sum a pair at a time
// with casting to integer (bitwise OR) to eliminate unnecessary
// double<->integer conversions.
var partialSum1 = (h + S1) | 0;
var partialSum2 = (ch + (goog.crypt.Sha2.Kx_[i] | 0)) | 0;
var partialSum3 = (partialSum2 + (w[i] | 0)) | 0;
var t1 = (partialSum1 + partialSum3) | 0;
h = g;
g = f;
f = e;
e = (d + t1) | 0;
d = c;
c = b;
b = a;
a = (t1 + t2) | 0;
}
this.hash_[0] = (this.hash_[0] + a) | 0;
this.hash_[1] = (this.hash_[1] + b) | 0;
this.hash_[2] = (this.hash_[2] + c) | 0;
this.hash_[3] = (this.hash_[3] + d) | 0;
this.hash_[4] = (this.hash_[4] + e) | 0;
this.hash_[5] = (this.hash_[5] + f) | 0;
this.hash_[6] = (this.hash_[6] + g) | 0;
this.hash_[7] = (this.hash_[7] + h) | 0;
};
/** @override */
goog.crypt.Sha2.prototype.update = function(message, opt_length) {
'use strict';
if (opt_length === undefined) {
opt_length = message.length;
}
// Process the message from left to right up to |opt_length| bytes.
// When we get a 512-bit chunk, compute the hash of it and reset
// this.chunk_. The message might not be multiple of 512 bits so we
// might end up with a chunk that is less than 512 bits. We store
// such partial chunk in this.chunk_ and it will be filled up later
// in digest().
var n = 0;
var inChunk = this.inChunk_;
// The input message could be either byte array of string.
if (typeof message === 'string') {
while (n < opt_length) {
this.chunk_[inChunk++] = message.charCodeAt(n++);
if (inChunk == this.blockSize) {
this.computeChunk_();
inChunk = 0;
}
}
} else if (goog.isArrayLike(message)) {
while (n < opt_length) {
var b = message[n++];
if (!('number' == typeof b && 0 <= b && 255 >= b && b == (b | 0))) {
throw new Error('message must be a byte array');
}
this.chunk_[inChunk++] = b;
if (inChunk == this.blockSize) {
this.computeChunk_();
inChunk = 0;
}
}
} else {
throw new Error('message must be string or array');
}
// Record the current bytes in chunk to support partial update.
this.inChunk_ = inChunk;
// Record total message bytes we have processed so far.
this.total_ += opt_length;
};
/** @override */
goog.crypt.Sha2.prototype.digest = function() {
'use strict';
var digest = [];
var totalBits = this.total_ * 8;
// Append pad 0x80 0x00*.
if (this.inChunk_ < 56) {
this.update(goog.crypt.Sha2.PADDING_, 56 - this.inChunk_);
} else {
this.update(
goog.crypt.Sha2.PADDING_, this.blockSize - (this.inChunk_ - 56));
}
// Append # bits in the 64-bit big-endian format.
for (var i = 63; i >= 56; i--) {
this.chunk_[i] = totalBits & 255;
totalBits /= 256; // Don't use bit-shifting here!
}
this.computeChunk_();
// Finally, output the result digest.
var n = 0;
for (var i = 0; i < this.numHashBlocks_; i++) {
for (var j = 24; j >= 0; j -= 8) {
digest[n++] = ((this.hash_[i] >> j) & 255);
}
}
return digest;
};
/**
* Constants used in SHA-2.
* @const
* @private {!Array<number>}
*/
goog.crypt.Sha2.K_ = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
];
/**
* Sha2.K as an Int32Array if this JS supports typed arrays; otherwise,
* the same array as Sha2.K.
*
* The compiler cannot remove an Int32Array, even if it is not needed
* (There are certain cases where creating an Int32Array is not
* side-effect free). Instead, the first time we construct a Sha2
* instance, we convert or assign Sha2.K as appropriate.
* @private {undefined|!Array<number>|!Int32Array}
*/
goog.crypt.Sha2.Kx_;