/**
* @license
* Copyright The Closure Library Authors.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @fileoverview Provides an object representation of an AffineTransform and
* methods for working with it.
*/
goog.provide('goog.graphics.AffineTransform');
/**
* Creates a 2D affine transform. An affine transform performs a linear
* mapping from 2D coordinates to other 2D coordinates that preserves the
* "straightness" and "parallelness" of lines.
*
* Such a coordinate transformation can be represented by a 3 row by 3 column
* matrix with an implied last row of [ 0 0 1 ]. This matrix transforms source
* coordinates (x,y) into destination coordinates (x',y') by considering them
* to be a column vector and multiplying the coordinate vector by the matrix
* according to the following process:
* <pre>
* [ x'] [ m00 m01 m02 ] [ x ] [ m00x + m01y + m02 ]
* [ y'] = [ m10 m11 m12 ] [ y ] = [ m10x + m11y + m12 ]
* [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ]
* </pre>
*
* This class is optimized for speed and minimizes calculations based on its
* knowledge of the underlying matrix (as opposed to say simply performing
* matrix multiplication).
*
* @param {number=} opt_m00 The m00 coordinate of the transform.
* @param {number=} opt_m10 The m10 coordinate of the transform.
* @param {number=} opt_m01 The m01 coordinate of the transform.
* @param {number=} opt_m11 The m11 coordinate of the transform.
* @param {number=} opt_m02 The m02 coordinate of the transform.
* @param {number=} opt_m12 The m12 coordinate of the transform.
* @constructor
* @final
*/
goog.graphics.AffineTransform = function(
opt_m00, opt_m10, opt_m01, opt_m11, opt_m02, opt_m12) {
'use strict';
if (arguments.length == 6) {
this.setTransform(
/** @type {number} */ (opt_m00),
/** @type {number} */ (opt_m10),
/** @type {number} */ (opt_m01),
/** @type {number} */ (opt_m11),
/** @type {number} */ (opt_m02),
/** @type {number} */ (opt_m12));
} else if (arguments.length != 0) {
throw new Error('Insufficient matrix parameters');
} else {
this.m00_ = this.m11_ = 1;
this.m10_ = this.m01_ = this.m02_ = this.m12_ = 0;
}
};
/**
* @return {boolean} Whether this transform is the identity transform.
*/
goog.graphics.AffineTransform.prototype.isIdentity = function() {
'use strict';
return this.m00_ == 1 && this.m10_ == 0 && this.m01_ == 0 && this.m11_ == 1 &&
this.m02_ == 0 && this.m12_ == 0;
};
/**
* @return {!goog.graphics.AffineTransform} A copy of this transform.
*/
goog.graphics.AffineTransform.prototype.clone = function() {
'use strict';
return new goog.graphics.AffineTransform(
this.m00_, this.m10_, this.m01_, this.m11_, this.m02_, this.m12_);
};
/**
* Sets this transform to the matrix specified by the 6 values.
*
* @param {number} m00 The m00 coordinate of the transform.
* @param {number} m10 The m10 coordinate of the transform.
* @param {number} m01 The m01 coordinate of the transform.
* @param {number} m11 The m11 coordinate of the transform.
* @param {number} m02 The m02 coordinate of the transform.
* @param {number} m12 The m12 coordinate of the transform.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.setTransform = function(
m00, m10, m01, m11, m02, m12) {
'use strict';
if (typeof m00 !== 'number' || typeof m10 !== 'number' ||
typeof m01 !== 'number' || typeof m11 !== 'number' ||
typeof m02 !== 'number' || typeof m12 !== 'number') {
throw new Error('Invalid transform parameters');
}
this.m00_ = m00;
this.m10_ = m10;
this.m01_ = m01;
this.m11_ = m11;
this.m02_ = m02;
this.m12_ = m12;
return this;
};
/**
* Sets this transform to be identical to the given transform.
*
* @param {!goog.graphics.AffineTransform} tx The transform to copy.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.copyFrom = function(tx) {
'use strict';
this.m00_ = tx.m00_;
this.m10_ = tx.m10_;
this.m01_ = tx.m01_;
this.m11_ = tx.m11_;
this.m02_ = tx.m02_;
this.m12_ = tx.m12_;
return this;
};
/**
* Concatenates this transform with a scaling transformation.
*
* @param {number} sx The x-axis scaling factor.
* @param {number} sy The y-axis scaling factor.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.scale = function(sx, sy) {
'use strict';
this.m00_ *= sx;
this.m10_ *= sx;
this.m01_ *= sy;
this.m11_ *= sy;
return this;
};
/**
* Pre-concatenates this transform with a scaling transformation,
* i.e. calculates the following matrix product:
*
* <pre>
* [sx 0 0] [m00 m01 m02]
* [ 0 sy 0] [m10 m11 m12]
* [ 0 0 1] [ 0 0 1]
* </pre>
*
* @param {number} sx The x-axis scaling factor.
* @param {number} sy The y-axis scaling factor.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.preScale = function(sx, sy) {
'use strict';
this.m00_ *= sx;
this.m01_ *= sx;
this.m02_ *= sx;
this.m10_ *= sy;
this.m11_ *= sy;
this.m12_ *= sy;
return this;
};
/**
* Concatenates this transform with a translate transformation.
*
* @param {number} dx The distance to translate in the x direction.
* @param {number} dy The distance to translate in the y direction.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.translate = function(dx, dy) {
'use strict';
this.m02_ += dx * this.m00_ + dy * this.m01_;
this.m12_ += dx * this.m10_ + dy * this.m11_;
return this;
};
/**
* Pre-concatenates this transform with a translate transformation,
* i.e. calculates the following matrix product:
*
* <pre>
* [1 0 dx] [m00 m01 m02]
* [0 1 dy] [m10 m11 m12]
* [0 0 1] [ 0 0 1]
* </pre>
*
* @param {number} dx The distance to translate in the x direction.
* @param {number} dy The distance to translate in the y direction.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.preTranslate = function(dx, dy) {
'use strict';
this.m02_ += dx;
this.m12_ += dy;
return this;
};
/**
* Concatenates this transform with a rotation transformation around an anchor
* point.
*
* @param {number} theta The angle of rotation measured in radians.
* @param {number} x The x coordinate of the anchor point.
* @param {number} y The y coordinate of the anchor point.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.rotate = function(theta, x, y) {
'use strict';
return this.concatenate(
goog.graphics.AffineTransform.getRotateInstance(theta, x, y));
};
/**
* Pre-concatenates this transform with a rotation transformation around an
* anchor point.
*
* @param {number} theta The angle of rotation measured in radians.
* @param {number} x The x coordinate of the anchor point.
* @param {number} y The y coordinate of the anchor point.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.preRotate = function(theta, x, y) {
'use strict';
return this.preConcatenate(
goog.graphics.AffineTransform.getRotateInstance(theta, x, y));
};
/**
* Concatenates this transform with a shear transformation.
*
* @param {number} shx The x shear factor.
* @param {number} shy The y shear factor.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.shear = function(shx, shy) {
'use strict';
const m00 = this.m00_;
const m10 = this.m10_;
this.m00_ += shy * this.m01_;
this.m10_ += shy * this.m11_;
this.m01_ += shx * m00;
this.m11_ += shx * m10;
return this;
};
/**
* Pre-concatenates this transform with a shear transformation.
* i.e. calculates the following matrix product:
*
* <pre>
* [ 1 shx 0] [m00 m01 m02]
* [shy 1 0] [m10 m11 m12]
* [ 0 0 1] [ 0 0 1]
* </pre>
*
* @param {number} shx The x shear factor.
* @param {number} shy The y shear factor.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.preShear = function(shx, shy) {
'use strict';
const m00 = this.m00_;
const m01 = this.m01_;
const m02 = this.m02_;
this.m00_ += shx * this.m10_;
this.m01_ += shx * this.m11_;
this.m02_ += shx * this.m12_;
this.m10_ += shy * m00;
this.m11_ += shy * m01;
this.m12_ += shy * m02;
return this;
};
/**
* @return {string} A string representation of this transform. The format of
* of the string is compatible with SVG matrix notation, i.e.
* "matrix(a,b,c,d,e,f)".
* @override
*/
goog.graphics.AffineTransform.prototype.toString = function() {
'use strict';
return 'matrix(' +
[this.m00_, this.m10_, this.m01_, this.m11_, this.m02_, this.m12_].join(
',') +
')';
};
/**
* @return {number} The scaling factor in the x-direction (m00).
*/
goog.graphics.AffineTransform.prototype.getScaleX = function() {
'use strict';
return this.m00_;
};
/**
* @return {number} The scaling factor in the y-direction (m11).
*/
goog.graphics.AffineTransform.prototype.getScaleY = function() {
'use strict';
return this.m11_;
};
/**
* @return {number} The translation in the x-direction (m02).
*/
goog.graphics.AffineTransform.prototype.getTranslateX = function() {
'use strict';
return this.m02_;
};
/**
* @return {number} The translation in the y-direction (m12).
*/
goog.graphics.AffineTransform.prototype.getTranslateY = function() {
'use strict';
return this.m12_;
};
/**
* @return {number} The shear factor in the x-direction (m01).
*/
goog.graphics.AffineTransform.prototype.getShearX = function() {
'use strict';
return this.m01_;
};
/**
* @return {number} The shear factor in the y-direction (m10).
*/
goog.graphics.AffineTransform.prototype.getShearY = function() {
'use strict';
return this.m10_;
};
/**
* Concatenates an affine transform to this transform.
*
* @param {!goog.graphics.AffineTransform} tx The transform to concatenate.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.concatenate = function(tx) {
'use strict';
let m0 = this.m00_;
let m1 = this.m01_;
this.m00_ = tx.m00_ * m0 + tx.m10_ * m1;
this.m01_ = tx.m01_ * m0 + tx.m11_ * m1;
this.m02_ += tx.m02_ * m0 + tx.m12_ * m1;
m0 = this.m10_;
m1 = this.m11_;
this.m10_ = tx.m00_ * m0 + tx.m10_ * m1;
this.m11_ = tx.m01_ * m0 + tx.m11_ * m1;
this.m12_ += tx.m02_ * m0 + tx.m12_ * m1;
return this;
};
/**
* Pre-concatenates an affine transform to this transform.
*
* @param {!goog.graphics.AffineTransform} tx The transform to preconcatenate.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.preConcatenate = function(tx) {
'use strict';
let m0 = this.m00_;
let m1 = this.m10_;
this.m00_ = tx.m00_ * m0 + tx.m01_ * m1;
this.m10_ = tx.m10_ * m0 + tx.m11_ * m1;
m0 = this.m01_;
m1 = this.m11_;
this.m01_ = tx.m00_ * m0 + tx.m01_ * m1;
this.m11_ = tx.m10_ * m0 + tx.m11_ * m1;
m0 = this.m02_;
m1 = this.m12_;
this.m02_ = tx.m00_ * m0 + tx.m01_ * m1 + tx.m02_;
this.m12_ = tx.m10_ * m0 + tx.m11_ * m1 + tx.m12_;
return this;
};
/**
* Transforms an array of coordinates by this transform and stores the result
* into a destination array.
*
* @param {!Array<number>} src The array containing the source points
* as x, y value pairs.
* @param {number} srcOff The offset to the first point to be transformed.
* @param {!Array<number>} dst The array into which to store the transformed
* point pairs.
* @param {number} dstOff The offset of the location of the first transformed
* point in the destination array.
* @param {number} numPts The number of points to transform.
*/
goog.graphics.AffineTransform.prototype.transform = function(
src, srcOff, dst, dstOff, numPts) {
'use strict';
let i = srcOff;
let j = dstOff;
const srcEnd = srcOff + 2 * numPts;
while (i < srcEnd) {
const x = src[i++];
const y = src[i++];
dst[j++] = x * this.m00_ + y * this.m01_ + this.m02_;
dst[j++] = x * this.m10_ + y * this.m11_ + this.m12_;
}
};
/**
* @return {number} The determinant of this transform.
*/
goog.graphics.AffineTransform.prototype.getDeterminant = function() {
'use strict';
return this.m00_ * this.m11_ - this.m01_ * this.m10_;
};
/**
* Returns whether the transform is invertible. A transform is not invertible
* if the determinant is 0 or any value is non-finite or NaN.
*
* @return {boolean} Whether the transform is invertible.
*/
goog.graphics.AffineTransform.prototype.isInvertible = function() {
'use strict';
const det = this.getDeterminant();
return isFinite(det) && isFinite(this.m02_) && isFinite(this.m12_) &&
det != 0;
};
/**
* @return {!goog.graphics.AffineTransform} An AffineTransform object
* representing the inverse transformation.
*/
goog.graphics.AffineTransform.prototype.createInverse = function() {
'use strict';
const det = this.getDeterminant();
return new goog.graphics.AffineTransform(
this.m11_ / det, -this.m10_ / det, -this.m01_ / det, this.m00_ / det,
(this.m01_ * this.m12_ - this.m11_ * this.m02_) / det,
(this.m10_ * this.m02_ - this.m00_ * this.m12_) / det);
};
/**
* Creates a transform representing a scaling transformation.
*
* @param {number} sx The x-axis scaling factor.
* @param {number} sy The y-axis scaling factor.
* @return {!goog.graphics.AffineTransform} A transform representing a scaling
* transformation.
*/
goog.graphics.AffineTransform.getScaleInstance = function(sx, sy) {
'use strict';
return new goog.graphics.AffineTransform().setToScale(sx, sy);
};
/**
* Creates a transform representing a translation transformation.
*
* @param {number} dx The distance to translate in the x direction.
* @param {number} dy The distance to translate in the y direction.
* @return {!goog.graphics.AffineTransform} A transform representing a
* translation transformation.
*/
goog.graphics.AffineTransform.getTranslateInstance = function(dx, dy) {
'use strict';
return new goog.graphics.AffineTransform().setToTranslation(dx, dy);
};
/**
* Creates a transform representing a shearing transformation.
*
* @param {number} shx The x-axis shear factor.
* @param {number} shy The y-axis shear factor.
* @return {!goog.graphics.AffineTransform} A transform representing a shearing
* transformation.
*/
goog.graphics.AffineTransform.getShearInstance = function(shx, shy) {
'use strict';
return new goog.graphics.AffineTransform().setToShear(shx, shy);
};
/**
* Creates a transform representing a rotation transformation.
*
* @param {number} theta The angle of rotation measured in radians.
* @param {number} x The x coordinate of the anchor point.
* @param {number} y The y coordinate of the anchor point.
* @return {!goog.graphics.AffineTransform} A transform representing a rotation
* transformation.
*/
goog.graphics.AffineTransform.getRotateInstance = function(theta, x, y) {
'use strict';
return new goog.graphics.AffineTransform().setToRotation(theta, x, y);
};
/**
* Sets this transform to a scaling transformation.
*
* @param {number} sx The x-axis scaling factor.
* @param {number} sy The y-axis scaling factor.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.setToScale = function(sx, sy) {
'use strict';
return this.setTransform(sx, 0, 0, sy, 0, 0);
};
/**
* Sets this transform to a translation transformation.
*
* @param {number} dx The distance to translate in the x direction.
* @param {number} dy The distance to translate in the y direction.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.setToTranslation = function(dx, dy) {
'use strict';
return this.setTransform(1, 0, 0, 1, dx, dy);
};
/**
* Sets this transform to a shearing transformation.
*
* @param {number} shx The x-axis shear factor.
* @param {number} shy The y-axis shear factor.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.setToShear = function(shx, shy) {
'use strict';
return this.setTransform(1, shy, shx, 1, 0, 0);
};
/**
* Sets this transform to a rotation transformation.
*
* @param {number} theta The angle of rotation measured in radians.
* @param {number} x The x coordinate of the anchor point.
* @param {number} y The y coordinate of the anchor point.
* @return {!goog.graphics.AffineTransform} This affine transform.
*/
goog.graphics.AffineTransform.prototype.setToRotation = function(theta, x, y) {
'use strict';
const cos = Math.cos(theta);
const sin = Math.sin(theta);
return this.setTransform(
cos, sin, -sin, cos, x - x * cos + y * sin, y - x * sin - y * cos);
};
/**
* Compares two affine transforms for equality.
*
* @param {goog.graphics.AffineTransform} tx The other affine transform.
* @return {boolean} whether the two transforms are equal.
*/
goog.graphics.AffineTransform.prototype.equals = function(tx) {
'use strict';
if (this === tx) {
return true;
}
if (!tx) {
return false;
}
return this.m00_ == tx.m00_ && this.m01_ == tx.m01_ && this.m02_ == tx.m02_ &&
this.m10_ == tx.m10_ && this.m11_ == tx.m11_ && this.m12_ == tx.m12_;
};