/**
* @license
* Copyright The Closure Library Authors.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @fileoverview Represents a cubic Bezier curve.
*
* Uses the deCasteljau algorithm to compute points on the curve.
* http://en.wikipedia.org/wiki/De_Casteljau's_algorithm
*
* Currently it uses an unrolled version of the algorithm for speed. Eventually
* it may be useful to use the loop form of the algorithm in order to support
* curves of arbitrary degree.
*/
goog.provide('goog.math.Bezier');
goog.require('goog.math');
goog.require('goog.math.Coordinate');
/**
* Object representing a cubic bezier curve.
* @param {number} x0 X coordinate of the start point.
* @param {number} y0 Y coordinate of the start point.
* @param {number} x1 X coordinate of the first control point.
* @param {number} y1 Y coordinate of the first control point.
* @param {number} x2 X coordinate of the second control point.
* @param {number} y2 Y coordinate of the second control point.
* @param {number} x3 X coordinate of the end point.
* @param {number} y3 Y coordinate of the end point.
* @struct
* @constructor
* @final
*/
goog.math.Bezier = function(x0, y0, x1, y1, x2, y2, x3, y3) {
'use strict';
/**
* X coordinate of the first point.
* @type {number}
*/
this.x0 = x0;
/**
* Y coordinate of the first point.
* @type {number}
*/
this.y0 = y0;
/**
* X coordinate of the first control point.
* @type {number}
*/
this.x1 = x1;
/**
* Y coordinate of the first control point.
* @type {number}
*/
this.y1 = y1;
/**
* X coordinate of the second control point.
* @type {number}
*/
this.x2 = x2;
/**
* Y coordinate of the second control point.
* @type {number}
*/
this.y2 = y2;
/**
* X coordinate of the end point.
* @type {number}
*/
this.x3 = x3;
/**
* Y coordinate of the end point.
* @type {number}
*/
this.y3 = y3;
};
/**
* Constant used to approximate ellipses.
* See: http://canvaspaint.org/blog/2006/12/ellipse/
* @type {number}
*/
goog.math.Bezier.KAPPA = 4 * (Math.sqrt(2) - 1) / 3;
/**
* @return {!goog.math.Bezier} A copy of this curve.
*/
goog.math.Bezier.prototype.clone = function() {
'use strict';
return new goog.math.Bezier(
this.x0, this.y0, this.x1, this.y1, this.x2, this.y2, this.x3, this.y3);
};
/**
* Test if the given curve is exactly the same as this one.
* @param {goog.math.Bezier} other The other curve.
* @return {boolean} Whether the given curve is the same as this one.
*/
goog.math.Bezier.prototype.equals = function(other) {
'use strict';
return this.x0 == other.x0 && this.y0 == other.y0 && this.x1 == other.x1 &&
this.y1 == other.y1 && this.x2 == other.x2 && this.y2 == other.y2 &&
this.x3 == other.x3 && this.y3 == other.y3;
};
/**
* Modifies the curve in place to progress in the opposite direction.
*/
goog.math.Bezier.prototype.flip = function() {
'use strict';
var temp = this.x0;
this.x0 = this.x3;
this.x3 = temp;
temp = this.y0;
this.y0 = this.y3;
this.y3 = temp;
temp = this.x1;
this.x1 = this.x2;
this.x2 = temp;
temp = this.y1;
this.y1 = this.y2;
this.y2 = temp;
};
/**
* Computes the curve's X coordinate at a point between 0 and 1.
* @param {number} t The point on the curve to find.
* @return {number} The computed coordinate.
*/
goog.math.Bezier.prototype.getPointX = function(t) {
'use strict';
// Special case start and end.
if (t == 0) {
return this.x0;
} else if (t == 1) {
return this.x3;
}
// Step one - from 4 points to 3
var ix0 = goog.math.lerp(this.x0, this.x1, t);
var ix1 = goog.math.lerp(this.x1, this.x2, t);
var ix2 = goog.math.lerp(this.x2, this.x3, t);
// Step two - from 3 points to 2
ix0 = goog.math.lerp(ix0, ix1, t);
ix1 = goog.math.lerp(ix1, ix2, t);
// Final step - last point
return goog.math.lerp(ix0, ix1, t);
};
/**
* Computes the curve's Y coordinate at a point between 0 and 1.
* @param {number} t The point on the curve to find.
* @return {number} The computed coordinate.
*/
goog.math.Bezier.prototype.getPointY = function(t) {
'use strict';
// Special case start and end.
if (t == 0) {
return this.y0;
} else if (t == 1) {
return this.y3;
}
// Step one - from 4 points to 3
var iy0 = goog.math.lerp(this.y0, this.y1, t);
var iy1 = goog.math.lerp(this.y1, this.y2, t);
var iy2 = goog.math.lerp(this.y2, this.y3, t);
// Step two - from 3 points to 2
iy0 = goog.math.lerp(iy0, iy1, t);
iy1 = goog.math.lerp(iy1, iy2, t);
// Final step - last point
return goog.math.lerp(iy0, iy1, t);
};
/**
* Computes the curve at a point between 0 and 1.
* @param {number} t The point on the curve to find.
* @return {!goog.math.Coordinate} The computed coordinate.
*/
goog.math.Bezier.prototype.getPoint = function(t) {
'use strict';
return new goog.math.Coordinate(this.getPointX(t), this.getPointY(t));
};
/**
* Changes this curve in place to be the portion of itself from [t, 1].
* @param {number} t The start of the desired portion of the curve.
*/
goog.math.Bezier.prototype.subdivideLeft = function(t) {
'use strict';
if (t == 1) {
return;
}
// Step one - from 4 points to 3
var ix0 = goog.math.lerp(this.x0, this.x1, t);
var iy0 = goog.math.lerp(this.y0, this.y1, t);
var ix1 = goog.math.lerp(this.x1, this.x2, t);
var iy1 = goog.math.lerp(this.y1, this.y2, t);
var ix2 = goog.math.lerp(this.x2, this.x3, t);
var iy2 = goog.math.lerp(this.y2, this.y3, t);
// Collect our new x1 and y1
this.x1 = ix0;
this.y1 = iy0;
// Step two - from 3 points to 2
ix0 = goog.math.lerp(ix0, ix1, t);
iy0 = goog.math.lerp(iy0, iy1, t);
ix1 = goog.math.lerp(ix1, ix2, t);
iy1 = goog.math.lerp(iy1, iy2, t);
// Collect our new x2 and y2
this.x2 = ix0;
this.y2 = iy0;
// Final step - last point
this.x3 = goog.math.lerp(ix0, ix1, t);
this.y3 = goog.math.lerp(iy0, iy1, t);
};
/**
* Changes this curve in place to be the portion of itself from [0, t].
* @param {number} t The end of the desired portion of the curve.
*/
goog.math.Bezier.prototype.subdivideRight = function(t) {
'use strict';
this.flip();
this.subdivideLeft(1 - t);
this.flip();
};
/**
* Changes this curve in place to be the portion of itself from [s, t].
* @param {number} s The start of the desired portion of the curve.
* @param {number} t The end of the desired portion of the curve.
*/
goog.math.Bezier.prototype.subdivide = function(s, t) {
'use strict';
this.subdivideRight(s);
this.subdivideLeft((t - s) / (1 - s));
};
/**
* Computes the position t of a point on the curve given its x coordinate.
* That is, for an input xVal, finds t s.t. getPointX(t) = xVal.
* As such, the following should always be true up to some small epsilon:
* t ~ solvePositionFromXValue(getPointX(t)) for t in [0, 1].
* @param {number} xVal The x coordinate of the point to find on the curve.
* @return {number} The position t.
*/
goog.math.Bezier.prototype.solvePositionFromXValue = function(xVal) {
'use strict';
// Desired precision on the computation.
var epsilon = 1e-6;
// Initial estimate of t using linear interpolation.
var t = (xVal - this.x0) / (this.x3 - this.x0);
if (t <= 0) {
return 0;
} else if (t >= 1) {
return 1;
}
// Try gradient descent to solve for t. If it works, it is very fast.
var tMin = 0;
var tMax = 1;
var value = 0;
for (var i = 0; i < 8; i++) {
value = this.getPointX(t);
var derivative = (this.getPointX(t + epsilon) - value) / epsilon;
if (Math.abs(value - xVal) < epsilon) {
return t;
} else if (Math.abs(derivative) < epsilon) {
break;
} else {
if (value < xVal) {
tMin = t;
} else {
tMax = t;
}
t -= (value - xVal) / derivative;
}
}
// If the gradient descent got stuck in a local minimum, e.g. because
// the derivative was close to 0, use a Dichotomy refinement instead.
// We limit the number of interations to 8.
for (var i = 0; Math.abs(value - xVal) > epsilon && i < 8; i++) {
if (value < xVal) {
tMin = t;
t = (t + tMax) / 2;
} else {
tMax = t;
t = (t + tMin) / 2;
}
value = this.getPointX(t);
}
return t;
};
/**
* Computes the y coordinate of a point on the curve given its x coordinate.
* @param {number} xVal The x coordinate of the point on the curve.
* @return {number} The y coordinate of the point on the curve.
*/
goog.math.Bezier.prototype.solveYValueFromXValue = function(xVal) {
'use strict';
return this.getPointY(this.solvePositionFromXValue(xVal));
};