/**
* @license
* Copyright The Closure Library Authors.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @fileoverview Defines a Long class for representing a 64-bit two's-complement
* integer value, which faithfully simulates the behavior of a Java "long". This
* implementation is derived from LongLib in GWT.
*/
goog.module('goog.math.Long');
goog.module.declareLegacyNamespace();
const asserts = goog.require('goog.asserts');
const reflect = goog.require('goog.reflect');
/**
* Represents a 64-bit two's-complement integer, given its low and high 32-bit
* values as *signed* integers. See the from* functions below for more
* convenient ways of constructing Longs.
*
* The internal representation of a long is the two given signed, 32-bit values.
* We use 32-bit pieces because these are the size of integers on which
* JavaScript performs bit-operations. For operations like addition and
* multiplication, we split each number into 16-bit pieces, which can easily be
* multiplied within JavaScript's floating-point representation without overflow
* or change in sign.
*
* In the algorithms below, we frequently reduce the negative case to the
* positive case by negating the input(s) and then post-processing the result.
* Note that we must ALWAYS check specially whether those values are MIN_VALUE
* (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
* a positive number, it overflows back into a negative). Not handling this
* case would often result in infinite recursion.
* @final
*/
class Long {
/**
* @param {number} low The low (signed) 32 bits of the long.
* @param {number} high The high (signed) 32 bits of the long.
*/
constructor(low, high) {
/**
* @const {number}
* @private
*/
this.low_ = low | 0; // force into 32 signed bits.
/**
* @const {number}
* @private
*/
this.high_ = high | 0; // force into 32 signed bits.
}
/** @return {number} The value, assuming it is a 32-bit integer. */
toInt() {
return this.low_;
}
/**
* @return {number} The closest floating-point representation to this value.
*/
toNumber() {
return this.high_ * TWO_PWR_32_DBL_ + this.getLowBitsUnsigned();
}
/**
* @return {boolean} if can be exactly represented using number (i.e.
* abs(value) < 2^53).
*/
isSafeInteger() {
var top11Bits = this.high_ >> 21;
// If top11Bits are all 0s, then the number is between [0, 2^53-1]
return top11Bits == 0
// If top11Bits are all 1s, then the number is between [-1, -2^53]
|| (top11Bits == -1
// and exclude -2^53
&& !(this.low_ == 0 && this.high_ == (0xffe00000 | 0)));
}
/**
* @param {number=} opt_radix The radix in which the text should be written.
* @return {string} The textual representation of this value.
* @override
*/
toString(opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw new Error('radix out of range: ' + radix);
}
// We can avoid very expensive division based code path for some common
// cases.
if (this.isSafeInteger()) {
var asNumber = this.toNumber();
// Shortcutting for radix 10 (common case) to avoid boxing via toString:
// https://jsperf.com/tostring-vs-vs-if
return radix == 10 ? ('' + asNumber) : asNumber.toString(radix);
}
// We need to split 64bit integer into: `a * radix**safeDigits + b` where
// neither `a` nor `b` exceeds 53 bits, meaning that safeDigits can be any
// number in a range: [(63 - 53) / log2(radix); 53 / log2(radix)].
// Other options that need to be benchmarked:
// 11..16 - (radix >> 2);
// 10..13 - (radix >> 3);
// 10..11 - (radix >> 4);
var safeDigits = 14 - (radix >> 2);
var radixPowSafeDigits = Math.pow(radix, safeDigits);
var radixToPower =
Long.fromBits(radixPowSafeDigits, radixPowSafeDigits / TWO_PWR_32_DBL_);
var remDiv = this.div(radixToPower);
var val = Math.abs(this.subtract(remDiv.multiply(radixToPower)).toNumber());
var digits = radix == 10 ? ('' + val) : val.toString(radix);
if (digits.length < safeDigits) {
// Up to 13 leading 0s we might need to insert as the greatest safeDigits
// value is 14 (for radix 2).
digits = '0000000000000'.substr(digits.length - safeDigits) + digits;
}
val = remDiv.toNumber();
return (radix == 10 ? val : val.toString(radix)) + digits;
}
/** @return {number} The high 32-bits as a signed value. */
getHighBits() {
return this.high_;
}
/** @return {number} The low 32-bits as a signed value. */
getLowBits() {
return this.low_;
}
/** @return {number} The low 32-bits as an unsigned value. */
getLowBitsUnsigned() {
// The right shifting fixes negative values in the case when
// intval >= 2^31; for more details see
// https://github.com/google/closure-library/pull/498
return this.low_ >>> 0;
}
/**
* @return {number} Returns the number of bits needed to represent the
* absolute value of this Long.
*/
getNumBitsAbs() {
if (this.isNegative()) {
if (this.equals(Long.getMinValue())) {
return 64;
} else {
return this.negate().getNumBitsAbs();
}
} else {
var val = this.high_ != 0 ? this.high_ : this.low_;
for (var bit = 31; bit > 0; bit--) {
if ((val & (1 << bit)) != 0) {
break;
}
}
return this.high_ != 0 ? bit + 33 : bit + 1;
}
}
/** @return {boolean} Whether this value is zero. */
isZero() {
// Check low part first as there is high chance it's not 0.
return this.low_ == 0 && this.high_ == 0;
}
/** @return {boolean} Whether this value is negative. */
isNegative() {
return this.high_ < 0;
}
/** @return {boolean} Whether this value is odd. */
isOdd() {
return (this.low_ & 1) == 1;
}
/**
* Returns a hash code for this long object that similar java.lang.Long one.
*
* @return {number} 32 bit hash code for this object.
*/
hashCode() {
return this.getLowBits() ^ this.getHighBits();
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long equals the other.
*/
equals(other) {
// Compare low parts first as there is higher chance they are different.
return (this.low_ == other.low_) && (this.high_ == other.high_);
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long does not equal the other.
*/
notEquals(other) {
return !this.equals(other);
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long is less than the other.
*/
lessThan(other) {
return this.compare(other) < 0;
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long is less than or equal to the other.
*/
lessThanOrEqual(other) {
return this.compare(other) <= 0;
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than the other.
*/
greaterThan(other) {
return this.compare(other) > 0;
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than or equal to the other.
*/
greaterThanOrEqual(other) {
return this.compare(other) >= 0;
}
/**
* Compares this Long with the given one.
* @param {?Long} other Long to compare against.
* @return {number} 0 if they are the same, 1 if the this is greater, and -1
* if the given one is greater.
*/
compare(other) {
if (this.high_ == other.high_) {
if (this.low_ == other.low_) {
return 0;
}
return this.getLowBitsUnsigned() > other.getLowBitsUnsigned() ? 1 : -1;
}
return this.high_ > other.high_ ? 1 : -1;
}
/** @return {!Long} The negation of this value. */
negate() {
var negLow = (~this.low_ + 1) | 0;
var overflowFromLow = !negLow;
var negHigh = (~this.high_ + overflowFromLow) | 0;
return Long.fromBits(negLow, negHigh);
}
/**
* Returns the sum of this and the given Long.
* @param {?Long} other Long to add to this one.
* @return {!Long} The sum of this and the given Long.
*/
add(other) {
// Divide each number into 4 chunks of 16 bits, and then sum the chunks.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 + b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 + b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 + b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 + b48;
c48 &= 0xFFFF;
return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
}
/**
* Returns the difference of this and the given Long.
* @param {?Long} other Long to subtract from this.
* @return {!Long} The difference of this and the given Long.
*/
subtract(other) {
return this.add(other.negate());
}
/**
* Returns the product of this and the given long.
* @param {?Long} other Long to multiply with this.
* @return {!Long} The product of this and the other.
*/
multiply(other) {
if (this.isZero()) {
return this;
}
if (other.isZero()) {
return other;
}
// Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
// We can skip products that would overflow.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 * b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 * b00;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c16 += a00 * b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 * b00;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a16 * b16;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a00 * b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
c48 &= 0xFFFF;
return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
}
/**
* Returns this Long divided by the given one.
* @param {?Long} other Long by which to divide.
* @return {!Long} This Long divided by the given one.
*/
div(other) {
if (other.isZero()) {
throw new Error('division by zero');
}
if (this.isNegative()) {
if (this.equals(Long.getMinValue())) {
if (other.equals(Long.getOne()) || other.equals(Long.getNegOne())) {
return Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE
}
if (other.equals(Long.getMinValue())) {
return Long.getOne();
}
// At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
var halfThis = this.shiftRight(1);
var approx = halfThis.div(other).shiftLeft(1);
if (approx.equals(Long.getZero())) {
return other.isNegative() ? Long.getOne() : Long.getNegOne();
}
var rem = this.subtract(other.multiply(approx));
var result = approx.add(rem.div(other));
return result;
}
if (other.isNegative()) {
return this.negate().div(other.negate());
}
return this.negate().div(other).negate();
}
if (this.isZero()) {
return Long.getZero();
}
if (other.isNegative()) {
if (other.equals(Long.getMinValue())) {
return Long.getZero();
}
return this.div(other.negate()).negate();
}
// Repeat the following until the remainder is less than other: find a
// floating-point that approximates remainder / other *from below*, add this
// into the result, and subtract it from the remainder. It is critical that
// the approximate value is less than or equal to the real value so that the
// remainder never becomes negative.
var res = Long.getZero();
var rem = this;
while (rem.greaterThanOrEqual(other)) {
// Approximate the result of division. This may be a little greater or
// smaller than the actual value.
var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
// We will tweak the approximate result by changing it in the 48-th digit
// or the smallest non-fractional digit, whichever is larger.
var log2 = Math.ceil(Math.log(approx) / Math.LN2);
var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
// Decrease the approximation until it is smaller than the remainder. Note
// that if it is too large, the product overflows and is negative.
var approxRes = Long.fromNumber(approx);
var approxRem = approxRes.multiply(other);
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
approx -= delta;
approxRes = Long.fromNumber(approx);
approxRem = approxRes.multiply(other);
}
// We know the answer can't be zero... and actually, zero would cause
// infinite recursion since we would make no progress.
if (approxRes.isZero()) {
approxRes = Long.getOne();
}
res = res.add(approxRes);
rem = rem.subtract(approxRem);
}
return res;
}
/**
* Returns this Long modulo the given one.
* @param {?Long} other Long by which to mod.
* @return {!Long} This Long modulo the given one.
*/
modulo(other) {
return this.subtract(this.div(other).multiply(other));
}
/** @return {!Long} The bitwise-NOT of this value. */
not() {
return Long.fromBits(~this.low_, ~this.high_);
}
/**
* Returns the bitwise-AND of this Long and the given one.
* @param {?Long} other The Long with which to AND.
* @return {!Long} The bitwise-AND of this and the other.
*/
and(other) {
return Long.fromBits(this.low_ & other.low_, this.high_ & other.high_);
}
/**
* Returns the bitwise-OR of this Long and the given one.
* @param {?Long} other The Long with which to OR.
* @return {!Long} The bitwise-OR of this and the other.
*/
or(other) {
return Long.fromBits(this.low_ | other.low_, this.high_ | other.high_);
}
/**
* Returns the bitwise-XOR of this Long and the given one.
* @param {?Long} other The Long with which to XOR.
* @return {!Long} The bitwise-XOR of this and the other.
*/
xor(other) {
return Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_);
}
/**
* Returns this Long with bits shifted to the left by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!Long} This shifted to the left by the given amount.
*/
shiftLeft(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var low = this.low_;
if (numBits < 32) {
var high = this.high_;
return Long.fromBits(
low << numBits, (high << numBits) | (low >>> (32 - numBits)));
} else {
return Long.fromBits(0, low << (numBits - 32));
}
}
}
/**
* Returns this Long with bits shifted to the right by the given amount.
* The new leading bits match the current sign bit.
* @param {number} numBits The number of bits by which to shift.
* @return {!Long} This shifted to the right by the given amount.
*/
shiftRight(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)), high >> numBits);
} else {
return Long.fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1);
}
}
}
/**
* Returns this Long with bits shifted to the right by the given amount, with
* zeros placed into the new leading bits.
* @param {number} numBits The number of bits by which to shift.
* @return {!Long} This shifted to the right by the given amount,
* with zeros placed into the new leading bits.
*/
shiftRightUnsigned(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
} else if (numBits == 32) {
return Long.fromBits(high, 0);
} else {
return Long.fromBits(high >>> (numBits - 32), 0);
}
}
}
/**
* Returns a Long representing the given (32-bit) integer value.
* @param {number} value The 32-bit integer in question.
* @return {!Long} The corresponding Long value.
*/
static fromInt(value) {
var intValue = value | 0;
asserts.assert(value === intValue, 'value should be a 32-bit integer');
if (-128 <= intValue && intValue < 128) {
return getCachedIntValue_(intValue);
} else {
return new Long(intValue, intValue < 0 ? -1 : 0);
}
}
/**
* Returns a Long representing the given value.
* NaN will be returned as zero. Infinity is converted to max value and
* -Infinity to min value.
* @param {number} value The number in question.
* @return {!Long} The corresponding Long value.
*/
static fromNumber(value) {
if (value > 0) {
if (value >= TWO_PWR_63_DBL_) {
return Long.getMaxValue();
}
return new Long(value, value / TWO_PWR_32_DBL_);
} else if (value < 0) {
if (value <= -TWO_PWR_63_DBL_) {
return Long.getMinValue();
}
return new Long(-value, -value / TWO_PWR_32_DBL_).negate();
} else {
// NaN or 0.
return Long.getZero();
}
}
/**
* Returns a Long representing the 64-bit integer that comes by concatenating
* the given high and low bits. Each is assumed to use 32 bits.
* @param {number} lowBits The low 32-bits.
* @param {number} highBits The high 32-bits.
* @return {!Long} The corresponding Long value.
*/
static fromBits(lowBits, highBits) {
return new Long(lowBits, highBits);
}
/**
* Returns a Long representation of the given string, written using the given
* radix.
* @param {string} str The textual representation of the Long.
* @param {number=} opt_radix The radix in which the text is written.
* @return {!Long} The corresponding Long value.
*/
static fromString(str, opt_radix) {
if (str.charAt(0) == '-') {
return Long.fromString(str.substring(1), opt_radix).negate();
}
// We can avoid very expensive multiply based code path for some common
// cases.
var numberValue = parseInt(str, opt_radix || 10);
if (numberValue <= MAX_SAFE_INTEGER_) {
return new Long(
(numberValue % TWO_PWR_32_DBL_) | 0,
(numberValue / TWO_PWR_32_DBL_) | 0);
}
if (str.length == 0) {
throw new Error('number format error: empty string');
}
if (str.indexOf('-') >= 0) {
throw new Error('number format error: interior "-" character: ' + str);
}
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw new Error('radix out of range: ' + radix);
}
// Do several (8) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated multiply.
var radixToPower = Long.fromNumber(Math.pow(radix, 8));
var result = Long.getZero();
for (var i = 0; i < str.length; i += 8) {
var size = Math.min(8, str.length - i);
var value = parseInt(str.substring(i, i + size), radix);
if (size < 8) {
var power = Long.fromNumber(Math.pow(radix, size));
result = result.multiply(power).add(Long.fromNumber(value));
} else {
result = result.multiply(radixToPower);
result = result.add(Long.fromNumber(value));
}
}
return result;
}
/**
* Returns the boolean value of whether the input string is within a Long's
* range. Assumes an input string containing only numeric characters with an
* optional preceding '-'.
* @param {string} str The textual representation of the Long.
* @param {number=} opt_radix The radix in which the text is written.
* @return {boolean} Whether the string is within the range of a Long.
*/
static isStringInRange(str, opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw new Error('radix out of range: ' + radix);
}
var extremeValue = (str.charAt(0) == '-') ? MIN_VALUE_FOR_RADIX_[radix] :
MAX_VALUE_FOR_RADIX_[radix];
if (str.length < extremeValue.length) {
return true;
} else if (str.length == extremeValue.length && str <= extremeValue) {
return true;
} else {
return false;
}
}
/**
* @return {!Long}
* @public
*/
static getZero() {
return ZERO_;
}
/**
* @return {!Long}
* @public
*/
static getOne() {
return ONE_;
}
/**
* @return {!Long}
* @public
*/
static getNegOne() {
return NEG_ONE_;
}
/**
* @return {!Long}
* @public
*/
static getMaxValue() {
return MAX_VALUE_;
}
/**
* @return {!Long}
* @public
*/
static getMinValue() {
return MIN_VALUE_;
}
/**
* @return {!Long}
* @public
*/
static getTwoPwr24() {
return TWO_PWR_24_;
}
}
exports = Long;
// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
// from* methods on which they depend.
/**
* A cache of the Long representations of small integer values.
* @type {!Object<number, !Long>}
* @private @const
*/
const IntCache_ = {};
/**
* Returns a cached long number representing the given (32-bit) integer value.
* @param {number} value The 32-bit integer in question.
* @return {!Long} The corresponding Long value.
* @private
*/
function getCachedIntValue_(value) {
return reflect.cache(IntCache_, value, function(val) {
return new Long(val, val < 0 ? -1 : 0);
});
}
/**
* The array of maximum values of a Long in string representation for a given
* radix between 2 and 36, inclusive.
* @private @const {!Array<string>}
*/
const MAX_VALUE_FOR_RADIX_ = [
'', '', // unused
'111111111111111111111111111111111111111111111111111111111111111',
// base 2
'2021110011022210012102010021220101220221', // base 3
'13333333333333333333333333333333', // base 4
'1104332401304422434310311212', // base 5
'1540241003031030222122211', // base 6
'22341010611245052052300', // base 7
'777777777777777777777', // base 8
'67404283172107811827', // base 9
'9223372036854775807', // base 10
'1728002635214590697', // base 11
'41a792678515120367', // base 12
'10b269549075433c37', // base 13
'4340724c6c71dc7a7', // base 14
'160e2ad3246366807', // base 15
'7fffffffffffffff', // base 16
'33d3d8307b214008', // base 17
'16agh595df825fa7', // base 18
'ba643dci0ffeehh', // base 19
'5cbfjia3fh26ja7', // base 20
'2heiciiie82dh97', // base 21
'1adaibb21dckfa7', // base 22
'i6k448cf4192c2', // base 23
'acd772jnc9l0l7', // base 24
'64ie1focnn5g77', // base 25
'3igoecjbmca687', // base 26
'27c48l5b37oaop', // base 27
'1bk39f3ah3dmq7', // base 28
'q1se8f0m04isb', // base 29
'hajppbc1fc207', // base 30
'bm03i95hia437', // base 31
'7vvvvvvvvvvvv', // base 32
'5hg4ck9jd4u37', // base 33
'3tdtk1v8j6tpp', // base 34
'2pijmikexrxp7', // base 35
'1y2p0ij32e8e7' // base 36
];
/**
* The array of minimum values of a Long in string representation for a given
* radix between 2 and 36, inclusive.
* @private @const {!Array<string>}
*/
const MIN_VALUE_FOR_RADIX_ = [
'', '', // unused
'-1000000000000000000000000000000000000000000000000000000000000000',
// base 2
'-2021110011022210012102010021220101220222', // base 3
'-20000000000000000000000000000000', // base 4
'-1104332401304422434310311213', // base 5
'-1540241003031030222122212', // base 6
'-22341010611245052052301', // base 7
'-1000000000000000000000', // base 8
'-67404283172107811828', // base 9
'-9223372036854775808', // base 10
'-1728002635214590698', // base 11
'-41a792678515120368', // base 12
'-10b269549075433c38', // base 13
'-4340724c6c71dc7a8', // base 14
'-160e2ad3246366808', // base 15
'-8000000000000000', // base 16
'-33d3d8307b214009', // base 17
'-16agh595df825fa8', // base 18
'-ba643dci0ffeehi', // base 19
'-5cbfjia3fh26ja8', // base 20
'-2heiciiie82dh98', // base 21
'-1adaibb21dckfa8', // base 22
'-i6k448cf4192c3', // base 23
'-acd772jnc9l0l8', // base 24
'-64ie1focnn5g78', // base 25
'-3igoecjbmca688', // base 26
'-27c48l5b37oaoq', // base 27
'-1bk39f3ah3dmq8', // base 28
'-q1se8f0m04isc', // base 29
'-hajppbc1fc208', // base 30
'-bm03i95hia438', // base 31
'-8000000000000', // base 32
'-5hg4ck9jd4u38', // base 33
'-3tdtk1v8j6tpq', // base 34
'-2pijmikexrxp8', // base 35
'-1y2p0ij32e8e8' // base 36
];
/**
* TODO(goktug): Replace with Number.MAX_SAFE_INTEGER when polyfil is guaranteed
* to be removed.
* @type {number}
* @private @const
*/
const MAX_SAFE_INTEGER_ = 0x1fffffffffffff;
// NOTE: the compiler should inline these constant values below and then remove
// these variables, so there should be no runtime penalty for these.
/**
* Number used repeated below in calculations. This must appear before the
* first call to any from* function above.
* @const {number}
* @private
*/
const TWO_PWR_32_DBL_ = 0x100000000;
/**
* @const {number}
* @private
*/
const TWO_PWR_63_DBL_ = 0x8000000000000000;
/**
* @private @const {!Long}
*/
const ZERO_ = Long.fromBits(0, 0);
/**
* @private @const {!Long}
*/
const ONE_ = Long.fromBits(1, 0);
/**
* @private @const {!Long}
*/
const NEG_ONE_ = Long.fromBits(-1, -1);
/**
* @private @const {!Long}
*/
const MAX_VALUE_ = Long.fromBits(0xFFFFFFFF, 0x7FFFFFFF);
/**
* @private @const {!Long}
*/
const MIN_VALUE_ = Long.fromBits(0, 0x80000000);
/**
* @private @const {!Long}
*/
const TWO_PWR_24_ = Long.fromBits(1 << 24, 0);