// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <vector>
#include "mediapipe/calculators/image/recolor_calculator.pb.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/formats/image_frame.h"
#include "mediapipe/framework/formats/image_frame_opencv.h"
#include "mediapipe/framework/port/opencv_core_inc.h"
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
#include "mediapipe/framework/port/ret_check.h"
#include "mediapipe/framework/port/status.h"
#include "mediapipe/util/color.pb.h"
#if !MEDIAPIPE_DISABLE_GPU
#include "mediapipe/gpu/gl_calculator_helper.h"
#include "mediapipe/gpu/gl_simple_shaders.h"
#include "mediapipe/gpu/shader_util.h"
#endif // !MEDIAPIPE_DISABLE_GPU
namespace {
enum { ATTRIB_VERTEX, ATTRIB_TEXTURE_POSITION, NUM_ATTRIBUTES };
constexpr char kImageFrameTag[] = "IMAGE";
constexpr char kMaskCpuTag[] = "MASK";
constexpr char kGpuBufferTag[] = "IMAGE_GPU";
constexpr char kMaskGpuTag[] = "MASK_GPU";
inline cv::Vec3b Blend(const cv::Vec3b& color1, const cv::Vec3b& color2,
float weight, int invert_mask,
int adjust_with_luminance) {
weight = (1 - invert_mask) * weight + invert_mask * (1.0f - weight);
float luminance =
(1 - adjust_with_luminance) * 1.0f +
adjust_with_luminance *
(color1[0] * 0.299 + color1[1] * 0.587 + color1[2] * 0.114) / 255;
float mix_value = weight * luminance;
return color1 * (1.0 - mix_value) + color2 * mix_value;
}
} // namespace
namespace mediapipe {
// A calculator to recolor a masked area of an image to a specified color.
//
// A mask image is used to specify where to overlay a user defined color.
//
// Inputs:
// One of the following IMAGE tags:
// IMAGE: An ImageFrame input image in ImageFormat::SRGB.
// IMAGE_GPU: A GpuBuffer input image, RGBA.
// One of the following MASK tags:
// MASK: An ImageFrame input mask in ImageFormat::GRAY8, SRGB, SRGBA, or
// VEC32F1
// MASK_GPU: A GpuBuffer input mask, RGBA.
// Output:
// One of the following IMAGE tags:
// IMAGE: An ImageFrame output image.
// IMAGE_GPU: A GpuBuffer output image.
//
// Options:
// color_rgb (required): A map of RGB values [0-255].
// mask_channel (optional): Which channel of mask image is used [RED or ALPHA]
//
// Usage example:
// node {
// calculator: "RecolorCalculator"
// input_stream: "IMAGE_GPU:input_image"
// input_stream: "MASK_GPU:input_mask"
// output_stream: "IMAGE_GPU:output_image"
// node_options: {
// [mediapipe.RecolorCalculatorOptions] {
// color { r: 0 g: 0 b: 255 }
// mask_channel: RED
// }
// }
// }
//
// Note: Cannot mix-match CPU & GPU inputs/outputs.
// CPU-in & CPU-out <or> GPU-in & GPU-out
class RecolorCalculator : public CalculatorBase {
public:
RecolorCalculator() = default;
~RecolorCalculator() override = default;
static absl::Status GetContract(CalculatorContract* cc);
absl::Status Open(CalculatorContext* cc) override;
absl::Status Process(CalculatorContext* cc) override;
absl::Status Close(CalculatorContext* cc) override;
private:
absl::Status LoadOptions(CalculatorContext* cc);
absl::Status InitGpu(CalculatorContext* cc);
absl::Status RenderGpu(CalculatorContext* cc);
absl::Status RenderCpu(CalculatorContext* cc);
void GlRender();
bool initialized_ = false;
std::vector<uint8_t> color_;
mediapipe::RecolorCalculatorOptions::MaskChannel mask_channel_;
bool use_gpu_ = false;
bool invert_mask_ = false;
bool adjust_with_luminance_ = false;
#if !MEDIAPIPE_DISABLE_GPU
mediapipe::GlCalculatorHelper gpu_helper_;
GLuint program_ = 0;
#endif // !MEDIAPIPE_DISABLE_GPU
};
REGISTER_CALCULATOR(RecolorCalculator);
// static
absl::Status RecolorCalculator::GetContract(CalculatorContract* cc) {
RET_CHECK(!cc->Inputs().GetTags().empty());
RET_CHECK(!cc->Outputs().GetTags().empty());
bool use_gpu = false;
#if !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kGpuBufferTag)) {
cc->Inputs().Tag(kGpuBufferTag).Set<mediapipe::GpuBuffer>();
use_gpu |= true;
}
#endif // !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kImageFrameTag)) {
cc->Inputs().Tag(kImageFrameTag).Set<ImageFrame>();
}
#if !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kMaskGpuTag)) {
cc->Inputs().Tag(kMaskGpuTag).Set<mediapipe::GpuBuffer>();
use_gpu |= true;
}
#endif // !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kMaskCpuTag)) {
cc->Inputs().Tag(kMaskCpuTag).Set<ImageFrame>();
}
#if !MEDIAPIPE_DISABLE_GPU
if (cc->Outputs().HasTag(kGpuBufferTag)) {
cc->Outputs().Tag(kGpuBufferTag).Set<mediapipe::GpuBuffer>();
use_gpu |= true;
}
#endif // !MEDIAPIPE_DISABLE_GPU
if (cc->Outputs().HasTag(kImageFrameTag)) {
cc->Outputs().Tag(kImageFrameTag).Set<ImageFrame>();
}
// Confirm only one of the input streams is present.
RET_CHECK(cc->Inputs().HasTag(kImageFrameTag) ^
cc->Inputs().HasTag(kGpuBufferTag));
// Confirm only one of the output streams is present.
RET_CHECK(cc->Outputs().HasTag(kImageFrameTag) ^
cc->Outputs().HasTag(kGpuBufferTag));
if (use_gpu) {
#if !MEDIAPIPE_DISABLE_GPU
MP_RETURN_IF_ERROR(mediapipe::GlCalculatorHelper::UpdateContract(cc));
#endif // !MEDIAPIPE_DISABLE_GPU
}
return absl::OkStatus();
}
absl::Status RecolorCalculator::Open(CalculatorContext* cc) {
cc->SetOffset(TimestampDiff(0));
if (cc->Inputs().HasTag(kGpuBufferTag)) {
use_gpu_ = true;
#if !MEDIAPIPE_DISABLE_GPU
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
#endif // !MEDIAPIPE_DISABLE_GPU
}
MP_RETURN_IF_ERROR(LoadOptions(cc));
return absl::OkStatus();
}
absl::Status RecolorCalculator::Process(CalculatorContext* cc) {
if (use_gpu_) {
#if !MEDIAPIPE_DISABLE_GPU
MP_RETURN_IF_ERROR(
gpu_helper_.RunInGlContext([this, &cc]() -> absl::Status {
if (!initialized_) {
MP_RETURN_IF_ERROR(InitGpu(cc));
initialized_ = true;
}
MP_RETURN_IF_ERROR(RenderGpu(cc));
return absl::OkStatus();
}));
#endif // !MEDIAPIPE_DISABLE_GPU
} else {
MP_RETURN_IF_ERROR(RenderCpu(cc));
}
return absl::OkStatus();
}
absl::Status RecolorCalculator::Close(CalculatorContext* cc) {
#if !MEDIAPIPE_DISABLE_GPU
gpu_helper_.RunInGlContext([this] {
if (program_) glDeleteProgram(program_);
program_ = 0;
});
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
absl::Status RecolorCalculator::RenderCpu(CalculatorContext* cc) {
if (cc->Inputs().Tag(kMaskCpuTag).IsEmpty()) {
cc->Outputs()
.Tag(kImageFrameTag)
.AddPacket(cc->Inputs().Tag(kImageFrameTag).Value());
return absl::OkStatus();
}
// Get inputs and setup output.
const auto& input_img = cc->Inputs().Tag(kImageFrameTag).Get<ImageFrame>();
const auto& mask_img = cc->Inputs().Tag(kMaskCpuTag).Get<ImageFrame>();
cv::Mat input_mat = formats::MatView(&input_img);
cv::Mat mask_mat = formats::MatView(&mask_img);
RET_CHECK(input_mat.channels() == 3); // RGB only.
if (mask_mat.channels() > 1) {
std::vector<cv::Mat> channels;
cv::split(mask_mat, channels);
if (mask_channel_ == mediapipe::RecolorCalculatorOptions_MaskChannel_ALPHA)
mask_mat = channels[3];
else
mask_mat = channels[0];
}
cv::Mat mask_full;
cv::resize(mask_mat, mask_full, input_mat.size());
const cv::Vec3b recolor = {color_[0], color_[1], color_[2]};
auto output_img = absl::make_unique<ImageFrame>(
input_img.Format(), input_mat.cols, input_mat.rows);
cv::Mat output_mat = mediapipe::formats::MatView(output_img.get());
const int invert_mask = invert_mask_ ? 1 : 0;
const int adjust_with_luminance = adjust_with_luminance_ ? 1 : 0;
// From GPU shader:
/*
vec4 weight = texture2D(mask, sample_coordinate);
vec4 color1 = texture2D(frame, sample_coordinate);
vec4 color2 = vec4(recolor, 1.0);
float luminance = dot(color1.rgb, vec3(0.299, 0.587, 0.114));
float mix_value = weight.MASK_COMPONENT * luminance;
fragColor = mix(color1, color2, mix_value);
*/
if (mask_img.Format() == ImageFormat::VEC32F1) {
for (int i = 0; i < output_mat.rows; ++i) {
for (int j = 0; j < output_mat.cols; ++j) {
const float weight = mask_full.at<float>(i, j);
output_mat.at<cv::Vec3b>(i, j) =
Blend(input_mat.at<cv::Vec3b>(i, j), recolor, weight, invert_mask,
adjust_with_luminance);
}
}
} else {
for (int i = 0; i < output_mat.rows; ++i) {
for (int j = 0; j < output_mat.cols; ++j) {
const float weight = mask_full.at<uchar>(i, j) * (1.0 / 255.0);
output_mat.at<cv::Vec3b>(i, j) =
Blend(input_mat.at<cv::Vec3b>(i, j), recolor, weight, invert_mask,
adjust_with_luminance);
}
}
}
cc->Outputs()
.Tag(kImageFrameTag)
.Add(output_img.release(), cc->InputTimestamp());
return absl::OkStatus();
}
absl::Status RecolorCalculator::RenderGpu(CalculatorContext* cc) {
if (cc->Inputs().Tag(kMaskGpuTag).IsEmpty()) {
cc->Outputs()
.Tag(kGpuBufferTag)
.AddPacket(cc->Inputs().Tag(kGpuBufferTag).Value());
return absl::OkStatus();
}
#if !MEDIAPIPE_DISABLE_GPU
// Get inputs and setup output.
const Packet& input_packet = cc->Inputs().Tag(kGpuBufferTag).Value();
const Packet& mask_packet = cc->Inputs().Tag(kMaskGpuTag).Value();
const auto& input_buffer = input_packet.Get<mediapipe::GpuBuffer>();
const auto& mask_buffer = mask_packet.Get<mediapipe::GpuBuffer>();
auto img_tex = gpu_helper_.CreateSourceTexture(input_buffer);
auto mask_tex = gpu_helper_.CreateSourceTexture(mask_buffer);
auto dst_tex =
gpu_helper_.CreateDestinationTexture(img_tex.width(), img_tex.height());
// Run recolor shader on GPU.
{
gpu_helper_.BindFramebuffer(dst_tex);
glActiveTexture(GL_TEXTURE1);
glBindTexture(img_tex.target(), img_tex.name());
glActiveTexture(GL_TEXTURE2);
glBindTexture(mask_tex.target(), mask_tex.name());
GlRender();
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
glFlush();
}
// Send result image in GPU packet.
auto output = dst_tex.GetFrame<mediapipe::GpuBuffer>();
cc->Outputs().Tag(kGpuBufferTag).Add(output.release(), cc->InputTimestamp());
// Cleanup
img_tex.Release();
mask_tex.Release();
dst_tex.Release();
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
void RecolorCalculator::GlRender() {
#if !MEDIAPIPE_DISABLE_GPU
static const GLfloat square_vertices[] = {
-1.0f, -1.0f, // bottom left
1.0f, -1.0f, // bottom right
-1.0f, 1.0f, // top left
1.0f, 1.0f, // top right
};
static const GLfloat texture_vertices[] = {
0.0f, 0.0f, // bottom left
1.0f, 0.0f, // bottom right
0.0f, 1.0f, // top left
1.0f, 1.0f, // top right
};
// program
glUseProgram(program_);
// vertex storage
GLuint vbo[2];
glGenBuffers(2, vbo);
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
// vbo 0
glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
glBufferData(GL_ARRAY_BUFFER, 4 * 2 * sizeof(GLfloat), square_vertices,
GL_STATIC_DRAW);
glEnableVertexAttribArray(ATTRIB_VERTEX);
glVertexAttribPointer(ATTRIB_VERTEX, 2, GL_FLOAT, 0, 0, nullptr);
// vbo 1
glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
glBufferData(GL_ARRAY_BUFFER, 4 * 2 * sizeof(GLfloat), texture_vertices,
GL_STATIC_DRAW);
glEnableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
glVertexAttribPointer(ATTRIB_TEXTURE_POSITION, 2, GL_FLOAT, 0, 0, nullptr);
// draw
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
// cleanup
glDisableVertexAttribArray(ATTRIB_VERTEX);
glDisableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
glDeleteVertexArrays(1, &vao);
glDeleteBuffers(2, vbo);
#endif // !MEDIAPIPE_DISABLE_GPU
}
absl::Status RecolorCalculator::LoadOptions(CalculatorContext* cc) {
const auto& options = cc->Options<mediapipe::RecolorCalculatorOptions>();
mask_channel_ = options.mask_channel();
if (!options.has_color()) RET_CHECK_FAIL() << "Missing color option.";
color_.push_back(options.color().r());
color_.push_back(options.color().g());
color_.push_back(options.color().b());
invert_mask_ = options.invert_mask();
adjust_with_luminance_ = options.adjust_with_luminance();
return absl::OkStatus();
}
absl::Status RecolorCalculator::InitGpu(CalculatorContext* cc) {
#if !MEDIAPIPE_DISABLE_GPU
const GLint attr_location[NUM_ATTRIBUTES] = {
ATTRIB_VERTEX,
ATTRIB_TEXTURE_POSITION,
};
const GLchar* attr_name[NUM_ATTRIBUTES] = {
"position",
"texture_coordinate",
};
std::string mask_component;
switch (mask_channel_) {
case mediapipe::RecolorCalculatorOptions_MaskChannel_UNKNOWN:
case mediapipe::RecolorCalculatorOptions_MaskChannel_RED:
mask_component = "r";
break;
case mediapipe::RecolorCalculatorOptions_MaskChannel_ALPHA:
mask_component = "a";
break;
}
// A shader to blend a color onto an image where the mask > 0.
// The blending is based on the input image luminosity.
const std::string frag_src = R"(
#if __VERSION__ < 130
#define in varying
#endif // __VERSION__ < 130
#ifdef GL_ES
#define fragColor gl_FragColor
precision highp float;
#else
#define lowp
#define mediump
#define highp
#define texture2D texture
out vec4 fragColor;
#endif // defined(GL_ES)
#define MASK_COMPONENT )" + mask_component +
R"(
in vec2 sample_coordinate;
uniform sampler2D frame;
uniform sampler2D mask;
uniform vec3 recolor;
uniform float invert_mask;
uniform float adjust_with_luminance;
void main() {
vec4 weight = texture2D(mask, sample_coordinate);
vec4 color1 = texture2D(frame, sample_coordinate);
vec4 color2 = vec4(recolor, 1.0);
weight = mix(weight, 1.0 - weight, invert_mask);
float luminance = mix(1.0,
dot(color1.rgb, vec3(0.299, 0.587, 0.114)),
adjust_with_luminance);
float mix_value = weight.MASK_COMPONENT * luminance;
fragColor = mix(color1, color2, mix_value);
}
)";
// shader program and params
mediapipe::GlhCreateProgram(mediapipe::kBasicVertexShader, frag_src.c_str(),
NUM_ATTRIBUTES, &attr_name[0], attr_location,
&program_);
RET_CHECK(program_) << "Problem initializing the program.";
glUseProgram(program_);
glUniform1i(glGetUniformLocation(program_, "frame"), 1);
glUniform1i(glGetUniformLocation(program_, "mask"), 2);
glUniform3f(glGetUniformLocation(program_, "recolor"), color_[0] / 255.0,
color_[1] / 255.0, color_[2] / 255.0);
glUniform1f(glGetUniformLocation(program_, "invert_mask"),
invert_mask_ ? 1.0f : 0.0f);
glUniform1f(glGetUniformLocation(program_, "adjust_with_luminance"),
adjust_with_luminance_ ? 1.0f : 0.0f);
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
} // namespace mediapipe