// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "absl/log/absl_log.h"
#include "mediapipe/calculators/image/set_alpha_calculator.pb.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/calculator_options.pb.h"
#include "mediapipe/framework/formats/image_format.pb.h"
#include "mediapipe/framework/formats/image_frame.h"
#include "mediapipe/framework/formats/image_frame_opencv.h"
#include "mediapipe/framework/port/opencv_core_inc.h"
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
#include "mediapipe/framework/port/status.h"
#include "mediapipe/framework/port/vector.h"
#if !MEDIAPIPE_DISABLE_GPU
#include "mediapipe/gpu/gl_calculator_helper.h"
#include "mediapipe/gpu/gl_simple_shaders.h"
#include "mediapipe/gpu/shader_util.h"
#endif // !MEDIAPIPE_DISABLE_GPU
namespace mediapipe {
namespace {
constexpr char kInputFrameTag[] = "IMAGE";
constexpr char kInputAlphaTag[] = "ALPHA";
constexpr char kOutputFrameTag[] = "IMAGE";
constexpr char kInputFrameTagGpu[] = "IMAGE_GPU";
constexpr char kInputAlphaTagGpu[] = "ALPHA_GPU";
constexpr char kOutputFrameTagGpu[] = "IMAGE_GPU";
constexpr int kNumChannelsRGBA = 4;
enum { ATTRIB_VERTEX, ATTRIB_TEXTURE_POSITION, NUM_ATTRIBUTES };
// Combines an RGB cv::Mat and an alpha cv::Mat of the same dimensions into an
// RGBA cv::Mat. Alpha may be read as uint8 or as another numeric type; in the
// latter case, it is upscaled to values between 0 and 255 from an assumed input
// range of [0, 1). Only the first channel of Alpha is used. Input & output Mat
// must be uchar.
template <typename AlphaType>
absl::Status CopyAlphaImage(const cv::Mat& alpha_mat, cv::Mat& output_mat) {
RET_CHECK_EQ(output_mat.rows, alpha_mat.rows);
RET_CHECK_EQ(output_mat.cols, alpha_mat.cols);
for (int i = 0; i < output_mat.rows; ++i) {
const AlphaType* alpha_ptr = alpha_mat.ptr<AlphaType>(i);
uchar* out_ptr = output_mat.ptr<uchar>(i);
for (int j = 0; j < output_mat.cols; ++j) {
const int out_idx = j * kNumChannelsRGBA;
const int alpha_idx = j * alpha_mat.channels();
if constexpr (std::is_same<AlphaType, uchar>::value) {
out_ptr[out_idx + 3] = alpha_ptr[alpha_idx + 0]; // channel 0 of mask
} else {
const AlphaType alpha = alpha_ptr[alpha_idx + 0]; // channel 0 of mask
out_ptr[out_idx + 3] = static_cast<uchar>(round(alpha * 255.0f));
}
}
}
return absl::OkStatus();
}
} // namespace
// A calculator for setting the alpha channel of an RGBA image.
//
// The alpha channel can be set to a single value, or come from an image mask.
// If the input image has an alpha channel, it will be updated.
// If the input image doesn't have an alpha channel, one will be added.
// Adding alpha channel to a Grayscale (single channel) input is not supported.
//
// Inputs:
// One of the following two IMAGE tags:
// IMAGE: ImageFrame containing input image - RGB or RGBA.
// IMAGE_GPU: GpuBuffer containing input image - RGB or RGBA.
//
// ALPHA (optional): ImageFrame alpha mask to apply,
// can be any # of channels, only first channel used,
// must be same format as input
// ALPHA_GPU (optional): GpuBuffer alpha mask to apply,
// can be any # of channels, only first channel used,
// must be same format as input
// If ALPHA* input tag is not set, the 'alpha_value' option must be used.
//
// Output:
// One of the following two tags:
// IMAGE: An ImageFrame with alpha channel set - RGBA only.
// IMAGE_GPU: A GpuBuffer with alpha channel set - RGBA only.
//
// Options:
// alpha_value (optional): The alpha value to set to input image, [0-255],
// takes precedence over input mask.
// If alpha_value is not set, the ALPHA* input tag must be used.
//
// Notes:
// Either alpha_value option or ALPHA (or ALPHA_GPU) must be set.
// All CPU inputs must have the same image dimensions and data type.
//
class SetAlphaCalculator : public CalculatorBase {
public:
SetAlphaCalculator() = default;
~SetAlphaCalculator() override = default;
static absl::Status GetContract(CalculatorContract* cc);
// From Calculator.
absl::Status Open(CalculatorContext* cc) override;
absl::Status Process(CalculatorContext* cc) override;
absl::Status Close(CalculatorContext* cc) override;
private:
absl::Status RenderGpu(CalculatorContext* cc);
absl::Status RenderCpu(CalculatorContext* cc);
absl::Status GlSetup(CalculatorContext* cc);
void GlRender(CalculatorContext* cc);
mediapipe::SetAlphaCalculatorOptions options_;
float alpha_value_ = -1.f;
bool use_gpu_ = false;
bool gpu_initialized_ = false;
#if !MEDIAPIPE_DISABLE_GPU
mediapipe::GlCalculatorHelper gpu_helper_;
GLuint program_ = 0;
#endif // !MEDIAPIPE_DISABLE_GPU
};
REGISTER_CALCULATOR(SetAlphaCalculator);
absl::Status SetAlphaCalculator::GetContract(CalculatorContract* cc) {
RET_CHECK_GE(cc->Inputs().NumEntries(), 1);
bool use_gpu = false;
if (cc->Inputs().HasTag(kInputFrameTag) &&
cc->Inputs().HasTag(kInputFrameTagGpu)) {
return absl::InternalError("Cannot have multiple input images.");
}
if (cc->Inputs().HasTag(kInputFrameTagGpu) !=
cc->Outputs().HasTag(kOutputFrameTagGpu)) {
return absl::InternalError("GPU output must have GPU input.");
}
// Input image to add/edit alpha channel.
#if !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kInputFrameTagGpu)) {
cc->Inputs().Tag(kInputFrameTagGpu).Set<mediapipe::GpuBuffer>();
use_gpu |= true;
}
#endif // !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kInputFrameTag)) {
cc->Inputs().Tag(kInputFrameTag).Set<ImageFrame>();
}
// Input alpha image mask (optional)
#if !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kInputAlphaTagGpu)) {
cc->Inputs().Tag(kInputAlphaTagGpu).Set<mediapipe::GpuBuffer>();
use_gpu |= true;
}
#endif // !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kInputAlphaTag)) {
cc->Inputs().Tag(kInputAlphaTag).Set<ImageFrame>();
}
// RGBA output image.
#if !MEDIAPIPE_DISABLE_GPU
if (cc->Outputs().HasTag(kOutputFrameTagGpu)) {
cc->Outputs().Tag(kOutputFrameTagGpu).Set<mediapipe::GpuBuffer>();
use_gpu |= true;
}
#endif // !MEDIAPIPE_DISABLE_GPU
if (cc->Outputs().HasTag(kOutputFrameTag)) {
cc->Outputs().Tag(kOutputFrameTag).Set<ImageFrame>();
}
if (use_gpu) {
#if !MEDIAPIPE_DISABLE_GPU
MP_RETURN_IF_ERROR(mediapipe::GlCalculatorHelper::UpdateContract(cc));
#endif // !MEDIAPIPE_DISABLE_GPU
}
return absl::OkStatus();
}
absl::Status SetAlphaCalculator::Open(CalculatorContext* cc) {
cc->SetOffset(TimestampDiff(0));
options_ = cc->Options<mediapipe::SetAlphaCalculatorOptions>();
if (cc->Inputs().HasTag(kInputFrameTagGpu) &&
cc->Outputs().HasTag(kOutputFrameTagGpu)) {
#if !MEDIAPIPE_DISABLE_GPU
use_gpu_ = true;
#else
RET_CHECK_FAIL() << "GPU processing not enabled.";
#endif // !MEDIAPIPE_DISABLE_GPU
}
// Get global value from options (-1 if not set).
alpha_value_ = options_.alpha_value();
if (use_gpu_) alpha_value_ /= 255.0;
const bool use_image_mask = cc->Inputs().HasTag(kInputAlphaTag) ||
cc->Inputs().HasTag(kInputAlphaTagGpu);
if (!((alpha_value_ >= 0) ^ use_image_mask))
RET_CHECK_FAIL() << "Must use either image mask or options alpha value.";
if (use_gpu_) {
#if !MEDIAPIPE_DISABLE_GPU
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
#endif
} // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
absl::Status SetAlphaCalculator::Process(CalculatorContext* cc) {
if (use_gpu_) {
#if !MEDIAPIPE_DISABLE_GPU
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext([this, cc]() -> absl::Status {
if (!gpu_initialized_) {
MP_RETURN_IF_ERROR(GlSetup(cc));
gpu_initialized_ = true;
}
MP_RETURN_IF_ERROR(RenderGpu(cc));
return absl::OkStatus();
}));
#endif // !MEDIAPIPE_DISABLE_GPU
} else {
MP_RETURN_IF_ERROR(RenderCpu(cc));
}
return absl::OkStatus();
}
absl::Status SetAlphaCalculator::Close(CalculatorContext* cc) {
#if !MEDIAPIPE_DISABLE_GPU
gpu_helper_.RunInGlContext([this] {
if (program_) glDeleteProgram(program_);
program_ = 0;
});
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
absl::Status SetAlphaCalculator::RenderCpu(CalculatorContext* cc) {
if (cc->Inputs().Tag(kInputFrameTag).IsEmpty()) {
return absl::OkStatus();
}
// Setup source image
const auto& input_frame = cc->Inputs().Tag(kInputFrameTag).Get<ImageFrame>();
const cv::Mat input_mat = formats::MatView(&input_frame);
if (!(input_mat.type() == CV_8UC3 || input_mat.type() == CV_8UC4)) {
ABSL_LOG(ERROR) << "Only 3 or 4 channel 8-bit input image supported";
}
// Setup destination image
auto output_frame = absl::make_unique<ImageFrame>(
ImageFormat::SRGBA, input_mat.cols, input_mat.rows);
cv::Mat output_mat = formats::MatView(output_frame.get());
const bool has_alpha_mask = cc->Inputs().HasTag(kInputAlphaTag) &&
!cc->Inputs().Tag(kInputAlphaTag).IsEmpty();
const bool use_alpha_mask = alpha_value_ < 0 && has_alpha_mask;
// Copy rgb part of the image in CPU
if (input_mat.channels() == 3) {
cv::cvtColor(input_mat, output_mat, cv::COLOR_RGB2RGBA);
} else {
input_mat.copyTo(output_mat);
}
// Setup alpha image in CPU.
if (use_alpha_mask) {
const auto& alpha_mask = cc->Inputs().Tag(kInputAlphaTag).Get<ImageFrame>();
cv::Mat alpha_mat = formats::MatView(&alpha_mask);
const bool alpha_is_float = CV_MAT_DEPTH(alpha_mat.type()) == CV_32F;
RET_CHECK(alpha_is_float || CV_MAT_DEPTH(alpha_mat.type()) == CV_8U);
if (alpha_is_float) {
MP_RETURN_IF_ERROR(CopyAlphaImage<float>(alpha_mat, output_mat));
} else {
MP_RETURN_IF_ERROR(CopyAlphaImage<uchar>(alpha_mat, output_mat));
}
} else {
const uchar alpha_value = std::min(std::max(0.0f, alpha_value_), 255.0f);
for (int i = 0; i < output_mat.rows; ++i) {
uchar* out_ptr = output_mat.ptr<uchar>(i);
for (int j = 0; j < output_mat.cols; ++j) {
const int out_idx = j * kNumChannelsRGBA;
out_ptr[out_idx + 3] = alpha_value; // use value from options
}
}
}
cc->Outputs()
.Tag(kOutputFrameTag)
.Add(output_frame.release(), cc->InputTimestamp());
return absl::OkStatus();
}
absl::Status SetAlphaCalculator::RenderGpu(CalculatorContext* cc) {
if (cc->Inputs().Tag(kInputFrameTagGpu).IsEmpty()) {
return absl::OkStatus();
}
#if !MEDIAPIPE_DISABLE_GPU
// Setup source texture.
const auto& input_frame =
cc->Inputs().Tag(kInputFrameTagGpu).Get<mediapipe::GpuBuffer>();
if (!(input_frame.format() == mediapipe::GpuBufferFormat::kBGRA32 ||
input_frame.format() == mediapipe::GpuBufferFormat::kRGB24)) {
ABSL_LOG(ERROR) << "Only RGB or RGBA input image supported";
}
auto input_texture = gpu_helper_.CreateSourceTexture(input_frame);
// Setup destination texture.
const int width = input_frame.width(), height = input_frame.height();
auto output_texture = gpu_helper_.CreateDestinationTexture(
width, height, mediapipe::GpuBufferFormat::kBGRA32);
const bool has_alpha_mask = cc->Inputs().HasTag(kInputAlphaTagGpu) &&
!cc->Inputs().Tag(kInputAlphaTagGpu).IsEmpty();
// Setup alpha texture and Update image in GPU shader.
if (has_alpha_mask) {
const auto& alpha_mask =
cc->Inputs().Tag(kInputAlphaTagGpu).Get<mediapipe::GpuBuffer>();
auto alpha_texture = gpu_helper_.CreateSourceTexture(alpha_mask);
gpu_helper_.BindFramebuffer(output_texture);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, input_texture.name());
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, alpha_texture.name());
GlRender(cc); // use channel 0 of mask
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
alpha_texture.Release();
} else {
gpu_helper_.BindFramebuffer(output_texture);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, input_texture.name());
GlRender(cc); // use value from options
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
}
glFlush();
// Send out image as GPU packet.
auto output_frame = output_texture.GetFrame<mediapipe::GpuBuffer>();
cc->Outputs()
.Tag(kOutputFrameTagGpu)
.Add(output_frame.release(), cc->InputTimestamp());
// Cleanup
input_texture.Release();
output_texture.Release();
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
void SetAlphaCalculator::GlRender(CalculatorContext* cc) {
#if !MEDIAPIPE_DISABLE_GPU
static const GLfloat square_vertices[] = {
-1.0f, -1.0f, // bottom left
1.0f, -1.0f, // bottom right
-1.0f, 1.0f, // top left
1.0f, 1.0f, // top right
};
static const GLfloat texture_vertices[] = {
0.0f, 0.0f, // bottom left
1.0f, 0.0f, // bottom right
0.0f, 1.0f, // top left
1.0f, 1.0f, // top right
};
// program
glUseProgram(program_);
// vertex storage
GLuint vbo[2];
glGenBuffers(2, vbo);
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
// vbo 0
glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
glBufferData(GL_ARRAY_BUFFER, 4 * 2 * sizeof(GLfloat), square_vertices,
GL_STATIC_DRAW);
glEnableVertexAttribArray(ATTRIB_VERTEX);
glVertexAttribPointer(ATTRIB_VERTEX, 2, GL_FLOAT, 0, 0, nullptr);
// vbo 1
glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
glBufferData(GL_ARRAY_BUFFER, 4 * 2 * sizeof(GLfloat), texture_vertices,
GL_STATIC_DRAW);
glEnableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
glVertexAttribPointer(ATTRIB_TEXTURE_POSITION, 2, GL_FLOAT, 0, 0, nullptr);
// draw
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
// cleanup
glDisableVertexAttribArray(ATTRIB_VERTEX);
glDisableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
glDeleteVertexArrays(1, &vao);
glDeleteBuffers(2, vbo);
#endif // !MEDIAPIPE_DISABLE_GPU
}
absl::Status SetAlphaCalculator::GlSetup(CalculatorContext* cc) {
#if !MEDIAPIPE_DISABLE_GPU
const GLint attr_location[NUM_ATTRIBUTES] = {
ATTRIB_VERTEX,
ATTRIB_TEXTURE_POSITION,
};
const GLchar* attr_name[NUM_ATTRIBUTES] = {
"position",
"texture_coordinate",
};
// Shader to overlay a texture onto another when overlay is non-zero.
// TODO split into two shaders to handle alpha_value<0 separately
const GLchar* frag_src = GLES_VERSION_COMPAT
R"(
#if __VERSION__ < 130
#define in varying
#endif // __VERSION__ < 130
#ifdef GL_ES
#define fragColor gl_FragColor
precision highp float;
#else
#define lowp
#define mediump
#define highp
#define texture2D texture
out vec4 fragColor;
#endif // defined(GL_ES)
in vec2 sample_coordinate;
uniform sampler2D input_frame;
uniform sampler2D alpha_mask;
uniform float alpha_value;
void main() {
vec3 image_pix = texture2D(input_frame, sample_coordinate).rgb;
float alpha = alpha_value;
if (alpha_value < 0.0) alpha = texture2D(alpha_mask, sample_coordinate).r;
vec4 out_pix = vec4(image_pix, alpha);
fragColor = out_pix;
}
)";
// Create shader program and set parameters.
mediapipe::GlhCreateProgram(mediapipe::kBasicVertexShader, frag_src,
NUM_ATTRIBUTES, (const GLchar**)&attr_name[0],
attr_location, &program_);
RET_CHECK(program_) << "Problem initializing the program.";
glUseProgram(program_);
glUniform1i(glGetUniformLocation(program_, "input_frame"), 1);
glUniform1i(glGetUniformLocation(program_, "alpha_mask"), 2);
glUniform1f(glGetUniformLocation(program_, "alpha_value"), alpha_value_);
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
} // namespace mediapipe