// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The option proto for the TensorsToClassificationCalculator.
syntax = "proto2";
package mediapipe;
import "mediapipe/framework/calculator.proto";
import "mediapipe/util/label_map.proto";
message TensorsToClassificationCalculatorOptions {
extend .mediapipe.CalculatorOptions {
optional TensorsToClassificationCalculatorOptions ext = 335742638;
}
message LabelMap {
message Entry {
optional int32 id = 1;
optional string label = 2;
}
repeated Entry entries = 1;
}
// Score threshold for preserving the class.
optional float min_score_threshold = 1;
// Number of highest scoring labels to output. If top_k is not positive then
// all labels are used.
optional int32 top_k = 2;
// Whether results should be sorted by descending score. By default, results
// may or may not be sorted: setting this to true guarantees that the returned
// results will be sorted by descending score.
optional bool sort_by_descending_score = 9;
// Path to a label map file for getting the actual name of class ids.
optional string label_map_path = 3;
// Label map. (Can be used instead of label_map_path.)
// NOTE: either "label_map_path" or "label_items", if specified, takes
// precedence over "label_map".
// Deprecated: please use `label_items` instead.
optional LabelMap label_map = 5;
// Label items. (Can be used instead of label_map_path.)
// NOTE: "label_map_path", if specified, takes precedence over "label_items".
map<int64, LabelMapItem> label_items = 6;
// Whether the input is a single float for binary classification.
// When true, only a single float is expected in the input tensor and the
// label map, if provided, is expected to have exactly two labels.
// The single score(float) represent the probability of first label, and
// 1 - score is the probabilility of the second label.
optional bool binary_classification = 4;
// The ids of classes that should be ignored during decoding the score for
// each classification. If `ignore_classes` is specified, all the other
// classes that are not in the `ignore_class` field will be considered during
// decoding. `ignore_classes` and `allow_classes` are mutually exclusive.
repeated int32 ignore_classes = 7 [packed = true];
// The ids of classes that will be allowed during decoding the score for
// each classification. If `allow_classes` is specified, all the other classes
// that are not in the `allow_classes` field will be completely ignored.
// `ignore_classes` and `allow_classes` are mutually exclusive.
repeated int32 allow_classes = 8 [packed = true];
}