// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Calculator converts from one-dimensional Tensor of DT_FLOAT to vector<float>
// OR from (batched) two-dimensional Tensor of DT_FLOAT to vector<vector<float>.
#include <cstdint>
#include <memory>
#include "mediapipe/calculators/tensorflow/tensor_to_vector_int_calculator_options.pb.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/port/status.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/types.h"
namespace mediapipe {
namespace tf = ::tensorflow;
class TensorToVectorIntCalculator : public CalculatorBase {
public:
static absl::Status GetContract(CalculatorContract* cc);
absl::Status Open(CalculatorContext* cc) override;
absl::Status Process(CalculatorContext* cc) override;
private:
void TokenizeVector(std::vector<int64_t>* vector) const;
void RemoveOverlapVector(std::vector<int64_t>* vector);
TensorToVectorIntCalculatorOptions options_;
int32_t overlapping_values_;
};
REGISTER_CALCULATOR(TensorToVectorIntCalculator);
absl::Status TensorToVectorIntCalculator::GetContract(CalculatorContract* cc) {
// Start with only one input packet.
RET_CHECK_EQ(cc->Inputs().NumEntries(), 1)
<< "Only one input stream is supported.";
cc->Inputs().Index(0).Set<tf::Tensor>(
// Input Tensor
);
RET_CHECK_EQ(cc->Outputs().NumEntries(), 1)
<< "Only one output stream is supported.";
const auto& options = cc->Options<TensorToVectorIntCalculatorOptions>();
if (options.tensor_is_2d()) {
RET_CHECK(!options.flatten_nd());
cc->Outputs().Index(0).Set<std::vector<std::vector<int64_t>>>(
/* "Output vector<vector<float>>." */);
} else {
cc->Outputs().Index(0).Set<std::vector<int64_t>>(
// Output vector<float>.
);
}
return absl::OkStatus();
}
absl::Status TensorToVectorIntCalculator::Open(CalculatorContext* cc) {
options_ = cc->Options<TensorToVectorIntCalculatorOptions>();
overlapping_values_ = 0;
// Inform mediapipe that this calculator produces an output at time t for
// each input received at time t (i.e. this calculator does not buffer
// inputs). This enables mediapipe to propagate time of arrival estimates in
// mediapipe graphs through this calculator.
cc->SetOffset(/*offset=*/0);
return absl::OkStatus();
}
absl::Status TensorToVectorIntCalculator::Process(CalculatorContext* cc) {
const tf::Tensor& input_tensor =
cc->Inputs().Index(0).Value().Get<tf::Tensor>();
RET_CHECK(tf::DT_INT32 == input_tensor.dtype() ||
tf::DT_INT64 == input_tensor.dtype())
<< "expected DT_INT32 or DT_INT64 input but got "
<< tensorflow::DataTypeString(input_tensor.dtype());
if (options_.tensor_is_2d()) {
RET_CHECK(2 == input_tensor.dims())
<< "Expected 2-dimensional Tensor, but the tensor shape is: "
<< input_tensor.shape().DebugString();
auto output = absl::make_unique<std::vector<std::vector<int64_t>>>(
input_tensor.dim_size(0),
std::vector<int64_t>(input_tensor.dim_size(1)));
for (int i = 0; i < input_tensor.dim_size(0); ++i) {
auto& instance_output = output->at(i);
if (tf::DT_INT32 == input_tensor.dtype()) {
const auto& slice =
input_tensor.Slice(i, i + 1).unaligned_flat<int32_t>();
for (int j = 0; j < input_tensor.dim_size(1); ++j) {
instance_output.at(j) = slice(j);
}
} else {
const auto& slice =
input_tensor.Slice(i, i + 1).unaligned_flat<int64_t>();
for (int j = 0; j < input_tensor.dim_size(1); ++j) {
instance_output.at(j) = slice(j);
}
}
TokenizeVector(&instance_output);
RemoveOverlapVector(&instance_output);
}
cc->Outputs().Index(0).Add(output.release(), cc->InputTimestamp());
} else {
if (!options_.flatten_nd()) {
RET_CHECK(1 == input_tensor.dims())
<< "`flatten_nd` is not set. Expected 1-dimensional Tensor, but the "
<< "tensor shape is: " << input_tensor.shape().DebugString();
}
auto output =
absl::make_unique<std::vector<int64_t>>(input_tensor.NumElements());
if (tf::DT_INT32 == input_tensor.dtype()) {
const auto& tensor_values = input_tensor.flat<int32_t>();
for (int i = 0; i < input_tensor.NumElements(); ++i) {
output->at(i) = tensor_values(i);
}
} else {
const auto& tensor_values = input_tensor.flat<int64_t>();
for (int i = 0; i < input_tensor.NumElements(); ++i) {
output->at(i) = tensor_values(i);
}
}
TokenizeVector(output.get());
RemoveOverlapVector(output.get());
cc->Outputs().Index(0).Add(output.release(), cc->InputTimestamp());
}
return absl::OkStatus();
}
void TensorToVectorIntCalculator::RemoveOverlapVector(
std::vector<int64_t>* vector) {
if (options_.overlap() <= 0) {
return;
}
if (overlapping_values_ > 0) {
if (vector->size() < overlapping_values_) {
vector->clear();
} else {
vector->erase(vector->begin(), vector->begin() + overlapping_values_);
}
}
overlapping_values_ = options_.overlap();
}
void TensorToVectorIntCalculator::TokenizeVector(
std::vector<int64_t>* vector) const {
if (!options_.tensor_is_token()) {
return;
}
std::vector<int64_t> tokens;
for (int i = 0; i < vector->size(); ++i) {
if (vector->at(i) > options_.token_threshold()) {
tokens.push_back(i + 1);
}
}
vector->swap(tokens);
}
} // namespace mediapipe