// Copyright 2020 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include "absl/status/status.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/packet.h"
#include "mediapipe/framework/port/ret_check.h"
#include "tensorflow/lite/allocation.h"
#include "tensorflow/lite/model_builder.h"
namespace mediapipe {
// Loads TfLite model from model blob specified as input side packet and outputs
// corresponding side packet.
//
// Input side packets:
// MODEL_BLOB - TfLite model blob/file-contents (std::string). You can read
// model blob from file (using whatever APIs you have) and pass
// it to the graph as input side packet or you can use some of
// calculators like LocalFileContentsCalculator to get model
// blob and use it as input here.
// MODEL_FD - Tflite model file descriptor std::tuple<int, size_t, size_t>
// containing (fd, offset, size).
// MODEL_SPAN - TfLite model file contents in absl::Span<const uint8_t>, whose
// underline buffer is owned outside of this calculator. User can
// get the model span from a managed environment and pass it to
// the graph as input side packet.
//
// Output side packets:
// MODEL - TfLite model. (std::unique_ptr<tflite::FlatBufferModel,
// std::function<void(tflite::FlatBufferModel*)>>)
// SHARED_MODEL - TfLite model (std::shared_ptr<tflite::FlatBufferModel>) to
// be shared by multiple downstream calculators.
//
// Example use:
//
// node {
// calculator: "TfLiteModelCalculator"
// input_side_packet: "MODEL_BLOB:model_blob"
// output_side_packet: "MODEL:model"
// }
//
class TfLiteModelCalculator : public CalculatorBase {
public:
using TfLiteModelPtr =
std::unique_ptr<tflite::FlatBufferModel,
std::function<void(tflite::FlatBufferModel*)>>;
using SharedTfLiteModelPtr = std::shared_ptr<tflite::FlatBufferModel>;
static constexpr absl::string_view kModelSpanTag = "MODEL_SPAN";
static constexpr absl::string_view kModelBlobTag = "MODEL_BLOB";
static constexpr absl::string_view kModelFDTag = "MODEL_FD";
static constexpr absl::string_view kModelTag = "MODEL";
static constexpr absl::string_view kSharedModelTag = "SHARED_MODEL";
static absl::Status GetContract(CalculatorContract* cc) {
if (cc->InputSidePackets().HasTag(kModelBlobTag)) {
cc->InputSidePackets().Tag(kModelBlobTag).Set<std::string>();
}
if (cc->InputSidePackets().HasTag(kModelFDTag)) {
cc->InputSidePackets()
.Tag(kModelFDTag)
.Set<std::tuple<int, size_t, size_t>>();
}
if (cc->InputSidePackets().HasTag(kModelSpanTag)) {
cc->InputSidePackets()
.Tag(kModelSpanTag)
.Set<absl::Span<const uint8_t>>();
}
RET_CHECK(cc->OutputSidePackets().HasTag(kModelTag) ^
cc->OutputSidePackets().HasTag(kSharedModelTag));
if (cc->OutputSidePackets().HasTag(kModelTag)) {
cc->OutputSidePackets().Tag(kModelTag).Set<TfLiteModelPtr>();
} else if (cc->OutputSidePackets().HasTag(kSharedModelTag)) {
cc->OutputSidePackets().Tag(kSharedModelTag).Set<SharedTfLiteModelPtr>();
}
return absl::OkStatus();
}
absl::Status Open(CalculatorContext* cc) override {
Packet model_packet;
std::unique_ptr<tflite::FlatBufferModel> model;
if (cc->InputSidePackets().HasTag(kModelBlobTag)) {
model_packet = cc->InputSidePackets().Tag(kModelBlobTag);
const std::string& model_blob = model_packet.Get<std::string>();
model = tflite::FlatBufferModel::BuildFromBuffer(model_blob.data(),
model_blob.size());
}
if (cc->InputSidePackets().HasTag(kModelSpanTag)) {
model_packet = cc->InputSidePackets().Tag(kModelSpanTag);
const absl::Span<const uint8_t>& model_view =
model_packet.Get<absl::Span<const uint8_t>>();
model = tflite::FlatBufferModel::BuildFromBuffer(
reinterpret_cast<const char*>(model_view.data()), model_view.size());
}
if (cc->InputSidePackets().HasTag(kModelFDTag)) {
#if defined(ABSL_HAVE_MMAP) && !TFLITE_WITH_STABLE_ABI
model_packet = cc->InputSidePackets().Tag(kModelFDTag);
const auto& model_fd =
model_packet.Get<std::tuple<int, size_t, size_t>>();
auto model_allocation = std::make_unique<tflite::MMAPAllocation>(
std::get<0>(model_fd), std::get<1>(model_fd), std::get<2>(model_fd),
tflite::DefaultErrorReporter());
model = tflite::FlatBufferModel::BuildFromAllocation(
std::move(model_allocation), tflite::DefaultErrorReporter());
#else
return absl::FailedPreconditionError(
"Loading by file descriptor is not supported on this platform.");
#endif
}
RET_CHECK(model) << "Failed to load TfLite model.";
TfLiteModelPtr output_model = TfLiteModelPtr(
model.release(), [model_packet](tflite::FlatBufferModel* model) {
// Keeping model_packet in order to keep underlying model blob
// which can be released only after TfLite model is not needed
// anymore (deleted).
delete model;
});
if (cc->OutputSidePackets().HasTag(kModelTag)) {
cc->OutputSidePackets().Tag(kModelTag).Set(
MakePacket<TfLiteModelPtr>(std::move(output_model)));
} else {
cc->OutputSidePackets()
.Tag(kSharedModelTag)
.Set(MakePacket<SharedTfLiteModelPtr>(std::move(output_model)));
}
return absl::OkStatus();
}
absl::Status Process(CalculatorContext* cc) override {
return absl::OkStatus();
}
};
REGISTER_CALCULATOR(TfLiteModelCalculator);
} // namespace mediapipe