// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "absl/log/absl_log.h"
#include "absl/strings/str_cat.h"
#include "mediapipe/calculators/util/annotation_overlay_calculator.pb.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/calculator_options.pb.h"
#include "mediapipe/framework/formats/image.h"
#include "mediapipe/framework/formats/image_format.pb.h"
#include "mediapipe/framework/formats/image_frame.h"
#include "mediapipe/framework/formats/image_frame_opencv.h"
#include "mediapipe/framework/formats/image_opencv.h"
#include "mediapipe/framework/formats/video_stream_header.h"
#include "mediapipe/framework/port/opencv_core_inc.h"
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
#include "mediapipe/framework/port/status.h"
#include "mediapipe/framework/port/vector.h"
#include "mediapipe/util/annotation_renderer.h"
#include "mediapipe/util/color.pb.h"
#include "mediapipe/util/render_data.pb.h"
#if !MEDIAPIPE_DISABLE_GPU
#include "mediapipe/gpu/gl_calculator_helper.h"
#include "mediapipe/gpu/gl_simple_shaders.h"
#include "mediapipe/gpu/gpu_buffer.h"
#include "mediapipe/gpu/gpu_buffer_format.h"
#include "mediapipe/gpu/shader_util.h"
#endif // !MEDIAPIPE_DISABLE_GPU
namespace mediapipe {
namespace {
constexpr char kVectorTag[] = "VECTOR";
constexpr char kGpuBufferTag[] = "IMAGE_GPU";
constexpr char kImageFrameTag[] = "IMAGE";
constexpr char kImageTag[] = "UIMAGE"; // Universal Image
enum { ATTRIB_VERTEX, ATTRIB_TEXTURE_POSITION, NUM_ATTRIBUTES };
// Round up n to next multiple of m.
size_t RoundUp(size_t n, size_t m) { return ((n + m - 1) / m) * m; } // NOLINT
// When using GPU, this color will become transparent when the calculator
// merges the annotation overlay with the image frame. As a result, drawing in
// this color is not supported and it should be set to something unlikely used.
constexpr uchar kAnnotationBackgroundColor = 2; // Grayscale value.
// Future Image type.
inline bool HasImageTag(mediapipe::CalculatorContext* cc) {
return cc->Inputs().HasTag(kImageTag);
}
} // namespace
// A calculator for rendering data on images.
//
// Inputs:
// 1. IMAGE or IMAGE_GPU (optional): An ImageFrame (or GpuBuffer),
// or UIMAGE (an Image).
// containing the input image.
// If output is CPU, and input isn't provided, the renderer creates a
// blank canvas with the width, height and color provided in the options.
// 2. RenderData proto on variable number of input streams. All the RenderData
// at a particular timestamp is drawn on the image in the order of their
// input streams. No tags required.
// 3. std::vector<RenderData> on variable number of input streams. RenderData
// objects at a particular timestamp are drawn on the image in order of the
// input vector items. These input streams are tagged with "VECTOR".
//
// Output:
// 1. IMAGE or IMAGE_GPU: A rendered ImageFrame (or GpuBuffer),
// or UIMAGE (an Image).
// Note: Output types should match their corresponding input stream type.
//
// For CPU input frames, only SRGBA, SRGB and GRAY8 format are supported. The
// output format is the same as input except for GRAY8 where the output is in
// SRGB to support annotations in color.
//
// For GPU input frames, only 4-channel images are supported.
//
// Note: When using GPU, drawing with color kAnnotationBackgroundColor (defined
// above) is not supported.
//
// Example config (CPU):
// node {
// calculator: "AnnotationOverlayCalculator"
// input_stream: "IMAGE:image_frames"
// input_stream: "render_data_1"
// input_stream: "render_data_2"
// input_stream: "render_data_3"
// input_stream: "VECTOR:0:render_data_vec_0"
// input_stream: "VECTOR:1:render_data_vec_1"
// output_stream: "IMAGE:decorated_frames"
// options {
// [mediapipe.AnnotationOverlayCalculatorOptions.ext] {
// }
// }
// }
//
// Example config (GPU):
// node {
// calculator: "AnnotationOverlayCalculator"
// input_stream: "IMAGE_GPU:image_frames"
// input_stream: "render_data_1"
// input_stream: "render_data_2"
// input_stream: "render_data_3"
// input_stream: "VECTOR:0:render_data_vec_0"
// input_stream: "VECTOR:1:render_data_vec_1"
// output_stream: "IMAGE_GPU:decorated_frames"
// options {
// [mediapipe.AnnotationOverlayCalculatorOptions.ext] {
// }
// }
// }
//
class AnnotationOverlayCalculator : public CalculatorBase {
public:
AnnotationOverlayCalculator() = default;
~AnnotationOverlayCalculator() override = default;
static absl::Status GetContract(CalculatorContract* cc);
// From Calculator.
absl::Status Open(CalculatorContext* cc) override;
absl::Status Process(CalculatorContext* cc) override;
absl::Status Close(CalculatorContext* cc) override;
private:
absl::Status CreateRenderTargetCpu(CalculatorContext* cc,
std::unique_ptr<cv::Mat>& image_mat,
ImageFormat::Format* target_format);
absl::Status CreateRenderTargetCpuImage(CalculatorContext* cc,
std::unique_ptr<cv::Mat>& image_mat,
ImageFormat::Format* target_format);
template <typename Type, const char* Tag>
absl::Status CreateRenderTargetGpu(CalculatorContext* cc,
std::unique_ptr<cv::Mat>& image_mat);
template <typename Type, const char* Tag>
absl::Status RenderToGpu(CalculatorContext* cc, uchar* overlay_image);
absl::Status RenderToCpu(CalculatorContext* cc,
const ImageFormat::Format& target_format,
uchar* data_image);
absl::Status GlRender(CalculatorContext* cc);
template <typename Type, const char* Tag>
absl::Status GlSetup(CalculatorContext* cc);
// Options for the calculator.
AnnotationOverlayCalculatorOptions options_;
// Underlying helper renderer library.
std::unique_ptr<AnnotationRenderer> renderer_;
// Indicates if image frame is available as input.
bool image_frame_available_ = false;
bool use_gpu_ = false;
bool gpu_initialized_ = false;
#if !MEDIAPIPE_DISABLE_GPU
mediapipe::GlCalculatorHelper gpu_helper_;
GLuint program_ = 0;
GLuint image_mat_tex_ = 0; // Overlay drawing image for GPU.
int width_ = 0;
int height_ = 0;
int width_canvas_ = 0; // Size of overlay drawing texture canvas.
int height_canvas_ = 0;
#endif // MEDIAPIPE_DISABLE_GPU
};
REGISTER_CALCULATOR(AnnotationOverlayCalculator);
absl::Status AnnotationOverlayCalculator::GetContract(CalculatorContract* cc) {
RET_CHECK_GE(cc->Inputs().NumEntries(), 1);
bool use_gpu = false;
RET_CHECK(cc->Inputs().HasTag(kImageFrameTag) +
cc->Inputs().HasTag(kGpuBufferTag) +
cc->Inputs().HasTag(kImageTag) <=
1);
RET_CHECK(cc->Outputs().HasTag(kImageFrameTag) +
cc->Outputs().HasTag(kGpuBufferTag) +
cc->Outputs().HasTag(kImageTag) ==
1);
// Input image to render onto copy of. Should be same type as output.
#if !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kGpuBufferTag)) {
cc->Inputs().Tag(kGpuBufferTag).Set<mediapipe::GpuBuffer>();
RET_CHECK(cc->Outputs().HasTag(kGpuBufferTag));
use_gpu = true;
}
#endif // !MEDIAPIPE_DISABLE_GPU
if (cc->Inputs().HasTag(kImageFrameTag)) {
cc->Inputs().Tag(kImageFrameTag).Set<ImageFrame>();
RET_CHECK(cc->Outputs().HasTag(kImageFrameTag));
}
if (cc->Inputs().HasTag(kImageTag)) {
cc->Inputs().Tag(kImageTag).Set<mediapipe::Image>();
RET_CHECK(cc->Outputs().HasTag(kImageTag));
#if !MEDIAPIPE_DISABLE_GPU
use_gpu = true; // Prepare GPU resources because images can come in on GPU.
#endif
}
// Data streams to render.
for (CollectionItemId id = cc->Inputs().BeginId(); id < cc->Inputs().EndId();
++id) {
auto tag_and_index = cc->Inputs().TagAndIndexFromId(id);
std::string tag = tag_and_index.first;
if (tag == kVectorTag) {
cc->Inputs().Get(id).Set<std::vector<RenderData>>();
} else if (tag.empty()) {
// Empty tag defaults to accepting a single object of RenderData type.
cc->Inputs().Get(id).Set<RenderData>();
}
}
// Rendered image. Should be same type as input.
#if !MEDIAPIPE_DISABLE_GPU
if (cc->Outputs().HasTag(kGpuBufferTag)) {
cc->Outputs().Tag(kGpuBufferTag).Set<mediapipe::GpuBuffer>();
}
#endif // !MEDIAPIPE_DISABLE_GPU
if (cc->Outputs().HasTag(kImageFrameTag)) {
cc->Outputs().Tag(kImageFrameTag).Set<ImageFrame>();
}
if (cc->Outputs().HasTag(kImageTag)) {
cc->Outputs().Tag(kImageTag).Set<mediapipe::Image>();
}
if (use_gpu) {
#if !MEDIAPIPE_DISABLE_GPU
MP_RETURN_IF_ERROR(mediapipe::GlCalculatorHelper::UpdateContract(cc));
#endif // !MEDIAPIPE_DISABLE_GPU
}
return absl::OkStatus();
}
absl::Status AnnotationOverlayCalculator::Open(CalculatorContext* cc) {
cc->SetOffset(TimestampDiff(0));
options_ = cc->Options<AnnotationOverlayCalculatorOptions>();
if (cc->Inputs().HasTag(kGpuBufferTag) || HasImageTag(cc)) {
#if !MEDIAPIPE_DISABLE_GPU
use_gpu_ = true;
#endif // !MEDIAPIPE_DISABLE_GPU
}
if (cc->Inputs().HasTag(kGpuBufferTag) ||
cc->Inputs().HasTag(kImageFrameTag) || HasImageTag(cc)) {
image_frame_available_ = true;
} else {
RET_CHECK(options_.has_canvas_width_px());
RET_CHECK(options_.has_canvas_height_px());
}
// Initialize the helper renderer library.
renderer_ = absl::make_unique<AnnotationRenderer>();
renderer_->SetFlipTextVertically(options_.flip_text_vertically());
if (use_gpu_) renderer_->SetScaleFactor(options_.gpu_scale_factor());
if (renderer_->GetScaleFactor() < 1.0 && HasImageTag(cc))
ABSL_LOG(WARNING)
<< "Annotation scale factor only supports GPU backed Image.";
// Set the output header based on the input header (if present).
const char* tag = HasImageTag(cc) ? kImageTag
: use_gpu_ ? kGpuBufferTag
: kImageFrameTag;
if (image_frame_available_ && !cc->Inputs().Tag(tag).Header().IsEmpty()) {
const auto& input_header =
cc->Inputs().Tag(tag).Header().Get<VideoHeader>();
auto* output_video_header = new VideoHeader(input_header);
cc->Outputs().Tag(tag).SetHeader(Adopt(output_video_header));
}
if (use_gpu_) {
#if !MEDIAPIPE_DISABLE_GPU
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
#endif // !MEDIAPIPE_DISABLE_GPU
}
return absl::OkStatus();
}
absl::Status AnnotationOverlayCalculator::Process(CalculatorContext* cc) {
if (cc->Inputs().HasTag(kGpuBufferTag) &&
cc->Inputs().Tag(kGpuBufferTag).IsEmpty()) {
return absl::OkStatus();
}
if (cc->Inputs().HasTag(kImageFrameTag) &&
cc->Inputs().Tag(kImageFrameTag).IsEmpty()) {
return absl::OkStatus();
}
if (cc->Inputs().HasTag(kImageTag) && cc->Inputs().Tag(kImageTag).IsEmpty()) {
return absl::OkStatus();
}
if (HasImageTag(cc)) {
use_gpu_ = cc->Inputs().Tag(kImageTag).Get<mediapipe::Image>().UsesGpu();
}
// Initialize render target, drawn with OpenCV.
std::unique_ptr<cv::Mat> image_mat;
ImageFormat::Format target_format;
if (use_gpu_) {
#if !MEDIAPIPE_DISABLE_GPU
if (!gpu_initialized_) {
MP_RETURN_IF_ERROR(
gpu_helper_.RunInGlContext([this, cc]() -> absl::Status {
if (HasImageTag(cc)) {
return GlSetup<mediapipe::Image, kImageTag>(cc);
}
return GlSetup<mediapipe::GpuBuffer, kGpuBufferTag>(cc);
}));
gpu_initialized_ = true;
}
if (HasImageTag(cc)) {
MP_RETURN_IF_ERROR(
(CreateRenderTargetGpu<mediapipe::Image, kImageTag>(cc, image_mat)));
}
if (cc->Inputs().HasTag(kGpuBufferTag)) {
MP_RETURN_IF_ERROR(
(CreateRenderTargetGpu<mediapipe::GpuBuffer, kGpuBufferTag>(
cc, image_mat)));
}
#endif // !MEDIAPIPE_DISABLE_GPU
} else {
if (cc->Outputs().HasTag(kImageTag)) {
MP_RETURN_IF_ERROR(
CreateRenderTargetCpuImage(cc, image_mat, &target_format));
}
if (cc->Outputs().HasTag(kImageFrameTag)) {
MP_RETURN_IF_ERROR(CreateRenderTargetCpu(cc, image_mat, &target_format));
}
}
// Reset the renderer with the image_mat. No copy here.
renderer_->AdoptImage(image_mat.get());
// Render streams onto render target.
for (CollectionItemId id = cc->Inputs().BeginId(); id < cc->Inputs().EndId();
++id) {
auto tag_and_index = cc->Inputs().TagAndIndexFromId(id);
std::string tag = tag_and_index.first;
if (!tag.empty() && tag != kVectorTag) {
continue;
}
if (cc->Inputs().Get(id).IsEmpty()) {
continue;
}
if (tag.empty()) {
// Empty tag defaults to accepting a single object of RenderData type.
const RenderData& render_data = cc->Inputs().Get(id).Get<RenderData>();
renderer_->RenderDataOnImage(render_data);
} else {
RET_CHECK_EQ(kVectorTag, tag);
const std::vector<RenderData>& render_data_vec =
cc->Inputs().Get(id).Get<std::vector<RenderData>>();
for (const RenderData& render_data : render_data_vec) {
renderer_->RenderDataOnImage(render_data);
}
}
}
if (use_gpu_) {
#if !MEDIAPIPE_DISABLE_GPU
// Overlay rendered image in OpenGL, onto a copy of input.
uchar* image_mat_ptr = image_mat->data;
MP_RETURN_IF_ERROR(
gpu_helper_.RunInGlContext([this, cc, image_mat_ptr]() -> absl::Status {
if (HasImageTag(cc)) {
return RenderToGpu<mediapipe::Image, kImageTag>(cc, image_mat_ptr);
}
return RenderToGpu<mediapipe::GpuBuffer, kGpuBufferTag>(
cc, image_mat_ptr);
}));
#endif // !MEDIAPIPE_DISABLE_GPU
} else {
// Copy the rendered image to output.
uchar* image_mat_ptr = image_mat->data;
MP_RETURN_IF_ERROR(RenderToCpu(cc, target_format, image_mat_ptr));
}
return absl::OkStatus();
}
absl::Status AnnotationOverlayCalculator::Close(CalculatorContext* cc) {
#if !MEDIAPIPE_DISABLE_GPU
gpu_helper_.RunInGlContext([this] {
if (program_) glDeleteProgram(program_);
program_ = 0;
if (image_mat_tex_) glDeleteTextures(1, &image_mat_tex_);
image_mat_tex_ = 0;
});
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
absl::Status AnnotationOverlayCalculator::RenderToCpu(
CalculatorContext* cc, const ImageFormat::Format& target_format,
uchar* data_image) {
auto output_frame = absl::make_unique<ImageFrame>(
target_format, renderer_->GetImageWidth(), renderer_->GetImageHeight());
#if !MEDIAPIPE_DISABLE_GPU
output_frame->CopyPixelData(target_format, renderer_->GetImageWidth(),
renderer_->GetImageHeight(), data_image,
ImageFrame::kGlDefaultAlignmentBoundary);
#else
output_frame->CopyPixelData(target_format, renderer_->GetImageWidth(),
renderer_->GetImageHeight(), data_image,
ImageFrame::kDefaultAlignmentBoundary);
#endif // !MEDIAPIPE_DISABLE_GPU
if (HasImageTag(cc)) {
auto out = std::make_unique<mediapipe::Image>(std::move(output_frame));
cc->Outputs().Tag(kImageTag).Add(out.release(), cc->InputTimestamp());
}
if (cc->Outputs().HasTag(kImageFrameTag)) {
cc->Outputs()
.Tag(kImageFrameTag)
.Add(output_frame.release(), cc->InputTimestamp());
}
return absl::OkStatus();
}
template <typename Type, const char* Tag>
absl::Status AnnotationOverlayCalculator::RenderToGpu(CalculatorContext* cc,
uchar* overlay_image) {
#if !MEDIAPIPE_DISABLE_GPU
// Source and destination textures.
const auto& input_frame = cc->Inputs().Tag(Tag).Get<Type>();
auto input_texture = gpu_helper_.CreateSourceTexture(input_frame);
auto output_texture = gpu_helper_.CreateDestinationTexture(
input_texture.width(), input_texture.height(),
mediapipe::GpuBufferFormat::kBGRA32);
// Upload render target to GPU.
{
glBindTexture(GL_TEXTURE_2D, image_mat_tex_);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width_canvas_, height_canvas_,
GL_RGB, GL_UNSIGNED_BYTE, overlay_image);
glBindTexture(GL_TEXTURE_2D, 0);
}
// Blend overlay image in GPU shader.
{
gpu_helper_.BindFramebuffer(output_texture);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, input_texture.name());
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, image_mat_tex_);
MP_RETURN_IF_ERROR(GlRender(cc));
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
glFlush();
}
// Send out blended image as GPU packet.
auto output_frame = output_texture.template GetFrame<Type>();
cc->Outputs().Tag(Tag).Add(output_frame.release(), cc->InputTimestamp());
// Cleanup
input_texture.Release();
output_texture.Release();
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
absl::Status AnnotationOverlayCalculator::CreateRenderTargetCpu(
CalculatorContext* cc, std::unique_ptr<cv::Mat>& image_mat,
ImageFormat::Format* target_format) {
if (image_frame_available_) {
const auto& input_frame =
cc->Inputs().Tag(kImageFrameTag).Get<ImageFrame>();
int target_mat_type;
switch (input_frame.Format()) {
case ImageFormat::SRGBA:
*target_format = ImageFormat::SRGBA;
target_mat_type = CV_8UC4;
break;
case ImageFormat::SRGB:
*target_format = ImageFormat::SRGB;
target_mat_type = CV_8UC3;
break;
case ImageFormat::GRAY8:
*target_format = ImageFormat::SRGB;
target_mat_type = CV_8UC3;
break;
default:
return absl::UnknownError("Unexpected image frame format.");
break;
}
image_mat = absl::make_unique<cv::Mat>(
input_frame.Height(), input_frame.Width(), target_mat_type);
auto input_mat = formats::MatView(&input_frame);
if (input_frame.Format() == ImageFormat::GRAY8) {
cv::Mat rgb_mat;
cv::cvtColor(input_mat, rgb_mat, cv::COLOR_GRAY2RGB);
rgb_mat.copyTo(*image_mat);
} else {
input_mat.copyTo(*image_mat);
}
} else {
image_mat = absl::make_unique<cv::Mat>(
options_.canvas_height_px(), options_.canvas_width_px(), CV_8UC3,
cv::Scalar(options_.canvas_color().r(), options_.canvas_color().g(),
options_.canvas_color().b()));
*target_format = ImageFormat::SRGB;
}
return absl::OkStatus();
}
absl::Status AnnotationOverlayCalculator::CreateRenderTargetCpuImage(
CalculatorContext* cc, std::unique_ptr<cv::Mat>& image_mat,
ImageFormat::Format* target_format) {
if (image_frame_available_) {
const auto& input_frame =
cc->Inputs().Tag(kImageTag).Get<mediapipe::Image>();
int target_mat_type;
switch (input_frame.image_format()) {
case ImageFormat::SRGBA:
*target_format = ImageFormat::SRGBA;
target_mat_type = CV_8UC4;
break;
case ImageFormat::SRGB:
*target_format = ImageFormat::SRGB;
target_mat_type = CV_8UC3;
break;
case ImageFormat::GRAY8:
*target_format = ImageFormat::SRGB;
target_mat_type = CV_8UC3;
break;
default:
return absl::UnknownError("Unexpected image frame format.");
break;
}
image_mat = absl::make_unique<cv::Mat>(
input_frame.height(), input_frame.width(), target_mat_type);
auto input_mat = formats::MatView(&input_frame);
if (input_frame.image_format() == ImageFormat::GRAY8) {
cv::Mat rgb_mat;
cv::cvtColor(*input_mat, rgb_mat, cv::COLOR_GRAY2RGB);
rgb_mat.copyTo(*image_mat);
} else {
input_mat->copyTo(*image_mat);
}
} else {
image_mat = absl::make_unique<cv::Mat>(
options_.canvas_height_px(), options_.canvas_width_px(), CV_8UC3,
cv::Scalar(options_.canvas_color().r(), options_.canvas_color().g(),
options_.canvas_color().b()));
*target_format = ImageFormat::SRGB;
}
return absl::OkStatus();
}
template <typename Type, const char* Tag>
absl::Status AnnotationOverlayCalculator::CreateRenderTargetGpu(
CalculatorContext* cc, std::unique_ptr<cv::Mat>& image_mat) {
#if !MEDIAPIPE_DISABLE_GPU
if (image_frame_available_) {
const auto& input_frame = cc->Inputs().Tag(Tag).Get<Type>();
const mediapipe::ImageFormat::Format format =
mediapipe::ImageFormatForGpuBufferFormat(input_frame.format());
if (format != mediapipe::ImageFormat::SRGBA &&
format != mediapipe::ImageFormat::SRGB)
RET_CHECK_FAIL() << "Unsupported GPU input format: " << format;
image_mat =
absl::make_unique<cv::Mat>(height_canvas_, width_canvas_, CV_8UC3);
memset(image_mat->data, kAnnotationBackgroundColor,
height_canvas_ * width_canvas_ * image_mat->elemSize());
} else {
image_mat = absl::make_unique<cv::Mat>(
height_canvas_, width_canvas_, CV_8UC3,
cv::Scalar(options_.canvas_color().r(), options_.canvas_color().g(),
options_.canvas_color().b()));
}
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
absl::Status AnnotationOverlayCalculator::GlRender(CalculatorContext* cc) {
#if !MEDIAPIPE_DISABLE_GPU
static const GLfloat square_vertices[] = {
-1.0f, -1.0f, // bottom left
1.0f, -1.0f, // bottom right
-1.0f, 1.0f, // top left
1.0f, 1.0f, // top right
};
static const GLfloat texture_vertices[] = {
0.0f, 0.0f, // bottom left
1.0f, 0.0f, // bottom right
0.0f, 1.0f, // top left
1.0f, 1.0f, // top right
};
// program
glUseProgram(program_);
// vertex storage
GLuint vbo[2];
glGenBuffers(2, vbo);
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
// vbo 0
glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
glBufferData(GL_ARRAY_BUFFER, 4 * 2 * sizeof(GLfloat), square_vertices,
GL_STATIC_DRAW);
glEnableVertexAttribArray(ATTRIB_VERTEX);
glVertexAttribPointer(ATTRIB_VERTEX, 2, GL_FLOAT, 0, 0, nullptr);
// vbo 1
glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
glBufferData(GL_ARRAY_BUFFER, 4 * 2 * sizeof(GLfloat), texture_vertices,
GL_STATIC_DRAW);
glEnableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
glVertexAttribPointer(ATTRIB_TEXTURE_POSITION, 2, GL_FLOAT, 0, 0, nullptr);
// draw
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
// cleanup
glDisableVertexAttribArray(ATTRIB_VERTEX);
glDisableVertexAttribArray(ATTRIB_TEXTURE_POSITION);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
glDeleteVertexArrays(1, &vao);
glDeleteBuffers(2, vbo);
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
template <typename Type, const char* Tag>
absl::Status AnnotationOverlayCalculator::GlSetup(CalculatorContext* cc) {
#if !MEDIAPIPE_DISABLE_GPU
const GLint attr_location[NUM_ATTRIBUTES] = {
ATTRIB_VERTEX,
ATTRIB_TEXTURE_POSITION,
};
const GLchar* attr_name[NUM_ATTRIBUTES] = {
"position",
"texture_coordinate",
};
// Shader to overlay a texture onto another when overlay is non-zero.
constexpr char kFragSrcBody[] = R"(
DEFAULT_PRECISION(mediump, float)
#ifdef GL_ES
#define fragColor gl_FragColor
#else
out vec4 fragColor;
#endif // GL_ES
in vec2 sample_coordinate;
uniform sampler2D input_frame;
// "overlay" texture has top-left origin (OpenCV mat with annotations has
// been uploaded to GPU without vertical flip)
uniform sampler2D overlay;
uniform vec3 transparent_color;
void main() {
vec3 image_pix = texture2D(input_frame, sample_coordinate).rgb;
#ifdef INPUT_FRAME_HAS_TOP_LEFT_ORIGIN
// "input_frame" has top-left origin same as "overlay", hence overlaying
// as is.
vec3 overlay_pix = texture2D(overlay, sample_coordinate).rgb;
#else
// "input_frame" has bottom-left origin, hence flipping "overlay" texture
// coordinates.
vec3 overlay_pix = texture2D(overlay, vec2(sample_coordinate.x, 1.0 - sample_coordinate.y)).rgb;
#endif // INPUT_FRAME_HAS_TOP_LEFT_ORIGIN
vec3 out_pix = image_pix;
float dist = distance(overlay_pix.rgb, transparent_color);
if (dist > 0.001) out_pix = overlay_pix;
fragColor.rgb = out_pix;
fragColor.a = 1.0;
}
)";
std::string defines;
if (options_.gpu_uses_top_left_origin()) {
defines = R"(
#define INPUT_FRAME_HAS_TOP_LEFT_ORIGIN;
)";
}
const std::string frag_src = absl::StrCat(
mediapipe::kMediaPipeFragmentShaderPreamble, defines, kFragSrcBody);
// Create shader program and set parameters
mediapipe::GlhCreateProgram(mediapipe::kBasicVertexShader, frag_src.c_str(),
NUM_ATTRIBUTES, (const GLchar**)&attr_name[0],
attr_location, &program_);
RET_CHECK(program_) << "Problem initializing the program.";
glUseProgram(program_);
glUniform1i(glGetUniformLocation(program_, "input_frame"), 1);
glUniform1i(glGetUniformLocation(program_, "overlay"), 2);
glUniform3f(glGetUniformLocation(program_, "transparent_color"),
kAnnotationBackgroundColor / 255.0,
kAnnotationBackgroundColor / 255.0,
kAnnotationBackgroundColor / 255.0);
// Ensure GPU texture is divisible by 4. See b/138751944 for more info.
const float alignment = ImageFrame::kGlDefaultAlignmentBoundary;
const float scale_factor = options_.gpu_scale_factor();
if (image_frame_available_) {
const auto& input_frame = cc->Inputs().Tag(Tag).Get<Type>();
width_ = RoundUp(input_frame.width(), alignment);
height_ = RoundUp(input_frame.height(), alignment);
} else {
width_ = RoundUp(options_.canvas_width_px(), alignment);
height_ = RoundUp(options_.canvas_height_px(), alignment);
}
width_canvas_ = RoundUp(width_ * scale_factor, alignment);
height_canvas_ = RoundUp(height_ * scale_factor, alignment);
// Init texture for opencv rendered frame.
{
glGenTextures(1, &image_mat_tex_);
glBindTexture(GL_TEXTURE_2D, image_mat_tex_);
// TODO
// OpenCV only renders to RGB images, not RGBA. Ideally this should be RGBA.
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width_canvas_, height_canvas_, 0,
GL_RGB, GL_UNSIGNED_BYTE, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D, 0);
}
#endif // !MEDIAPIPE_DISABLE_GPU
return absl::OkStatus();
}
} // namespace mediapipe