// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cmath>
#include <vector>
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/formats/detection.pb.h"
#include "mediapipe/framework/formats/location.h"
#include "mediapipe/framework/port/ret_check.h"
namespace mediapipe {
namespace {
constexpr char kDetectionsTag[] = "DETECTIONS";
constexpr char kLetterboxPaddingTag[] = "LETTERBOX_PADDING";
} // namespace
// Adjusts detection locations on a letterboxed image to the corresponding
// locations on the same image with the letterbox removed. This is useful to map
// the detections inferred from a letterboxed image, for example, output of
// the ImageTransformationCalculator when the scale mode is FIT, back to the
// corresponding input image before letterboxing.
//
// Input:
// DETECTIONS: An std::vector<Detection> representing detections on an
// letterboxed image.
//
// LETTERBOX_PADDING: An std::array<float, 4> representing the letterbox
// padding from the 4 sides ([left, top, right, bottom]) of the letterboxed
// image, normalized to [0.f, 1.f] by the letterboxed image dimensions.
//
// Output:
// DETECTIONS: An std::vector<Detection> representing detections with their
// locations adjusted to the letterbox-removed (non-padded) image.
//
// Usage example:
// node {
// calculator: "DetectionLetterboxRemovalCalculator"
// input_stream: "DETECTIONS:detections"
// input_stream: "LETTERBOX_PADDING:letterbox_padding"
// output_stream: "DETECTIONS:adjusted_detections"
// }
class DetectionLetterboxRemovalCalculator : public CalculatorBase {
public:
static absl::Status GetContract(CalculatorContract* cc) {
RET_CHECK(cc->Inputs().HasTag(kDetectionsTag) &&
cc->Inputs().HasTag(kLetterboxPaddingTag))
<< "Missing one or more input streams.";
cc->Inputs().Tag(kDetectionsTag).Set<std::vector<Detection>>();
cc->Inputs().Tag(kLetterboxPaddingTag).Set<std::array<float, 4>>();
cc->Outputs().Tag(kDetectionsTag).Set<std::vector<Detection>>();
return absl::OkStatus();
}
absl::Status Open(CalculatorContext* cc) override {
cc->SetOffset(TimestampDiff(0));
return absl::OkStatus();
}
absl::Status Process(CalculatorContext* cc) override {
// Only process if there's input detections.
if (cc->Inputs().Tag(kDetectionsTag).IsEmpty()) {
return absl::OkStatus();
}
const auto& input_detections =
cc->Inputs().Tag(kDetectionsTag).Get<std::vector<Detection>>();
const auto& letterbox_padding =
cc->Inputs().Tag(kLetterboxPaddingTag).Get<std::array<float, 4>>();
const float left = letterbox_padding[0];
const float top = letterbox_padding[1];
const float left_and_right = letterbox_padding[0] + letterbox_padding[2];
const float top_and_bottom = letterbox_padding[1] + letterbox_padding[3];
auto output_detections = absl::make_unique<std::vector<Detection>>();
for (const auto& detection : input_detections) {
Detection new_detection;
new_detection.CopyFrom(detection);
LocationData::RelativeBoundingBox* relative_bbox =
new_detection.mutable_location_data()
->mutable_relative_bounding_box();
relative_bbox->set_xmin(
(detection.location_data().relative_bounding_box().xmin() - left) /
(1.0f - left_and_right));
relative_bbox->set_ymin(
(detection.location_data().relative_bounding_box().ymin() - top) /
(1.0f - top_and_bottom));
// The size of the bounding box will change as well.
relative_bbox->set_width(
detection.location_data().relative_bounding_box().width() /
(1.0f - left_and_right));
relative_bbox->set_height(
detection.location_data().relative_bounding_box().height() /
(1.0f - top_and_bottom));
// Adjust keypoints as well.
for (int i = 0;
i < new_detection.mutable_location_data()->relative_keypoints_size();
++i) {
auto* keypoint =
new_detection.mutable_location_data()->mutable_relative_keypoints(
i);
const float new_x = (keypoint->x() - left) / (1.0f - left_and_right);
const float new_y = (keypoint->y() - top) / (1.0f - top_and_bottom);
keypoint->set_x(new_x);
keypoint->set_y(new_y);
}
output_detections->emplace_back(new_detection);
}
cc->Outputs()
.Tag(kDetectionsTag)
.Add(output_detections.release(), cc->InputTimestamp());
return absl::OkStatus();
}
};
REGISTER_CALCULATOR(DetectionLetterboxRemovalCalculator);
} // namespace mediapipe