// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/framework/tool/template_parser.h"
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_set.h"
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "absl/memory/memory.h"
#include "absl/status/status.h"
#include "absl/strings/ascii.h"
#include "absl/strings/match.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "google/protobuf/descriptor.h"
#include "google/protobuf/dynamic_message.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/tokenizer.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "google/protobuf/io/zero_copy_stream_impl_lite.h"
#include "google/protobuf/text_format.h"
#include "google/protobuf/wire_format_lite.h"
#include "mediapipe/framework/calculator.pb.h"
#include "mediapipe/framework/deps/proto_descriptor.pb.h"
#include "mediapipe/framework/port/map_util.h"
#include "mediapipe/framework/port/ret_check.h"
#include "mediapipe/framework/port/status.h"
#include "mediapipe/framework/port/status_macros.h"
#include "mediapipe/framework/tool/calculator_graph_template.pb.h"
#include "mediapipe/framework/tool/proto_util_lite.h"
using mediapipe::proto_ns::Descriptor;
using mediapipe::proto_ns::DynamicMessageFactory;
using mediapipe::proto_ns::EnumDescriptor;
using mediapipe::proto_ns::EnumValueDescriptor;
using mediapipe::proto_ns::FieldDescriptor;
using mediapipe::proto_ns::Message;
using mediapipe::proto_ns::OneofDescriptor;
using mediapipe::proto_ns::Reflection;
using mediapipe::proto_ns::TextFormat;
using ProtoPath = mediapipe::tool::ProtoUtilLite::ProtoPath;
using FieldType = mediapipe::tool::ProtoUtilLite::FieldType;
using FieldValue = mediapipe::tool::ProtoUtilLite::FieldValue;
namespace mediapipe {
namespace tool {
namespace io {
using proto_ns::io::ArrayInputStream;
using proto_ns::io::CodedInputStream;
using proto_ns::io::CodedOutputStream;
using proto_ns::io::ErrorCollector;
using proto_ns::io::StringOutputStream;
using proto_ns::io::Tokenizer;
using proto_ns::io::ZeroCopyInputStream;
typedef proto_ns::io::Tokenizer::Token Token;
float SafeDoubleToFloat(double value) {
if (value > std::numeric_limits<float>::max()) {
return std::numeric_limits<float>::infinity();
} else if (value < -std::numeric_limits<float>::max()) {
return -std::numeric_limits<float>::infinity();
} else {
return static_cast<float>(value);
}
}
} // namespace io
namespace internal {
using proto_ns::internal::GetAnyFieldDescriptors;
using proto_ns::internal::kTypeGoogleApisComPrefix;
using proto_ns::internal::kTypeGoogleProdComPrefix;
using proto_ns::internal::WireFormatLite;
} // namespace internal
namespace {
inline bool IsHexNumber(const std::string& str) {
return (str.length() >= 2 && str[0] == '0' &&
(str[1] == 'x' || str[1] == 'X'));
}
inline bool IsOctNumber(const std::string& str) {
return (str.length() >= 2 && str[0] == '0' &&
(str[1] >= '0' && str[1] < '8'));
}
// Returns true if two tokens are adjacent with no whitespace separation.
bool IsAdjacent(const io::Token& t1, const io::Token& t2) {
return t1.line == t2.line && t1.end_column == t2.column;
}
// A tokenizer with support for a few two-symbol tokens.
class Tokenizer {
public:
Tokenizer(io::ZeroCopyInputStream* input, io::ErrorCollector* error_collector)
: tokenizer_(input, error_collector) {
// For backwards-compatibility with proto1, we need to allow the 'f' suffix
// for floats.
tokenizer_.set_allow_f_after_float(true);
// '#' starts a comment.
tokenizer_.set_comment_style(io::Tokenizer::SH_COMMENT_STYLE);
tokenizer_.set_require_space_after_number(false);
tokenizer_.set_allow_multiline_strings(true);
// Look ahead one token.
current_ = tokenizer_.current();
tokenizer_.Next();
}
// Reads the next token, joining two symbols if needed.
bool Next() {
static auto kDoubleTokens =
new std::set<std::string>{">=", "<=", "==", "!=", "&&", "||"};
current_ = tokenizer_.current();
tokenizer_.Next();
if (IsAdjacent(current_, tokenizer_.current())) {
std::string double_token =
absl::StrCat(current_.text, tokenizer_.current().text);
if (kDoubleTokens->count(double_token) > 0) {
current_.text = double_token;
current_.end_column = tokenizer_.current().end_column;
tokenizer_.Next();
}
}
return true;
}
// Returns the latest fully resolved token.
const io::Token& current() { return current_; }
private:
// The delegate Tokenizer.
io::Tokenizer tokenizer_;
// The latest fully resolved token.
io::Token current_;
};
} // namespace
// ===========================================================================
// Implementation of the parse information tree class.
TemplateParser::ParseInfoTree::ParseInfoTree() {}
TemplateParser::ParseInfoTree::~ParseInfoTree() {}
void TemplateParser::ParseInfoTree::RecordLocation(
const FieldDescriptor* field, TextFormat::ParseLocation location) {
locations_[field].push_back(location);
}
TemplateParser::ParseInfoTree*
TemplateParser::ParseInfoTree::CreateNested( // NOLINT
const FieldDescriptor* field) {
// Owned by us in the map.
auto instance = absl::make_unique<TemplateParser::ParseInfoTree>();
std::vector<std::unique_ptr<TemplateParser::ParseInfoTree>>* trees =
&nested_[field];
instance->path_ =
absl::StrCat(path_, "/", field->number(), "[", trees->size(), "]");
trees->push_back(std::move(instance));
return trees->back().get();
}
void CheckFieldIndex(const FieldDescriptor* field, int index) {
if (field == NULL) {
return;
}
if (field->is_repeated() && index == -1) {
ABSL_LOG(ERROR) << "Index must be in range of repeated field values. "
<< "Field: " << field->name();
} else if (!field->is_repeated() && index != -1) {
ABSL_LOG(ERROR) << "Index must be -1 for singular fields."
<< "Field: " << field->name();
}
}
TextFormat::ParseLocation TemplateParser::ParseInfoTree::GetLocation(
const FieldDescriptor* field, int index) const {
CheckFieldIndex(field, index);
if (index == -1) {
index = 0;
}
const std::vector<TextFormat::ParseLocation>* locations =
mediapipe::FindOrNull(locations_, field);
if (locations == NULL || index >= locations->size()) {
return TextFormat::ParseLocation();
}
return (*locations)[index];
}
TemplateParser::ParseInfoTree* TemplateParser::ParseInfoTree::GetTreeForNested(
const FieldDescriptor* field, int index) const {
CheckFieldIndex(field, index);
if (index == -1) {
index = 0;
}
const std::vector<std::unique_ptr<TemplateParser::ParseInfoTree>>* trees =
mediapipe::FindOrNull(nested_, field);
if (trees == NULL || index >= trees->size()) {
return NULL;
}
return (*trees)[index].get();
}
std::string TemplateParser::ParseInfoTree::GetLastPath(
const FieldDescriptor* field) {
int index = locations_[field].size();
return absl::StrCat(path_, "/", field->number(), "[", index, "]");
}
std::string TemplateParser::ParseInfoTree::GetPath() { return path_; }
namespace {
// These functions implement the behavior of the "default" TextFormat::Finder,
// they are defined as standalone to be called when finder_ is NULL.
const FieldDescriptor* DefaultFinderFindExtension(Message* message,
const std::string& name) {
return message->GetReflection()->FindKnownExtensionByName(name);
}
const Descriptor* DefaultFinderFindAnyType(const Message& message,
const std::string& prefix,
const std::string& name) {
if (prefix != internal::kTypeGoogleApisComPrefix &&
prefix != internal::kTypeGoogleProdComPrefix) {
return NULL;
}
return message.GetDescriptor()->file()->pool()->FindMessageTypeByName(name);
}
} // namespace
// ===========================================================================
// Internal class for parsing an ASCII representation of a Protocol Message.
// Makes code slightly more readable. The meaning of "DO(foo)" is
// "Execute foo and fail if it fails.", where failure is indicated by
// returning false. Borrowed from parser.cc (Thanks Kenton!).
#define DO(STATEMENT) \
if (STATEMENT) { \
} else { \
return false; \
}
class TemplateParser::Parser::ParserImpl {
public:
typedef proto_ns::TextFormat::ParseLocation ParseLocation;
// Determines if repeated values for non-repeated fields and
// oneofs are permitted, e.g., the string "foo: 1 foo: 2" for a
// required/optional field named "foo", or "baz: 1 qux: 2"
// where "baz" and "qux" are members of the same oneof.
enum SingularOverwritePolicy {
ALLOW_SINGULAR_OVERWRITES = 0, // the last value is retained
FORBID_SINGULAR_OVERWRITES = 1, // an error is issued
};
ParserImpl(const Descriptor* root_message_type,
io::ZeroCopyInputStream* input_stream,
io::ErrorCollector* error_collector,
const TextFormat::Finder* finder, ParseInfoTree* parse_info_tree,
SingularOverwritePolicy singular_overwrite_policy,
bool allow_case_insensitive_field, bool allow_unknown_field,
bool allow_unknown_extension, bool allow_unknown_enum,
bool allow_field_number, bool allow_relaxed_whitespace,
bool allow_partial, int recursion_limit)
: error_collector_(error_collector),
finder_(finder),
parse_info_tree_(parse_info_tree),
tokenizer_error_collector_(this),
tokenizer_(input_stream, &tokenizer_error_collector_),
root_message_type_(root_message_type),
singular_overwrite_policy_(singular_overwrite_policy),
allow_case_insensitive_field_(allow_case_insensitive_field),
allow_unknown_field_(allow_unknown_field),
allow_unknown_extension_(allow_unknown_extension),
allow_unknown_enum_(allow_unknown_enum),
allow_field_number_(allow_field_number),
allow_partial_(allow_partial),
recursion_limit_(recursion_limit),
had_errors_(false) {
// Consume the starting token.
tokenizer_.Next();
}
virtual ~ParserImpl() {}
// Parses the ASCII representation specified in input and saves the
// information into the output pointer (a Message). Returns
// false if an error occurs (an error will also be logged to
// ABSL_LOG(ERROR)).
virtual bool Parse(Message* output) {
// Consume fields until we cannot do so anymore.
while (true) {
if (LookingAtType(io::Tokenizer::TYPE_END)) {
return !had_errors_;
}
if (LookingAt("%")) {
DO(ConsumeFieldTemplate(output));
} else {
DO(ConsumeField(output));
}
}
}
bool ParseField(const FieldDescriptor* field, Message* output) {
bool suc;
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
suc = ConsumeFieldMessage(output, output->GetReflection(), field);
} else {
suc = ConsumeFieldValue(output, output->GetReflection(), field);
}
return suc && LookingAtType(io::Tokenizer::TYPE_END);
}
void ReportError(int line, int col, absl::string_view message) {
had_errors_ = true;
if (error_collector_ == NULL) {
if (line >= 0) {
ABSL_LOG(ERROR) << "Error parsing text-format "
<< root_message_type_->full_name() << ": " << (line + 1)
<< ":" << (col + 1) << ": " << message;
} else {
ABSL_LOG(ERROR) << "Error parsing text-format "
<< root_message_type_->full_name() << ": " << message;
}
} else {
error_collector_->AddError(line, col, std::string(message));
}
}
void ReportWarning(int line, int col, absl::string_view message) {
if (error_collector_ == NULL) {
if (line >= 0) {
ABSL_LOG(WARNING) << "Warning parsing text-format "
<< root_message_type_->full_name() << ": "
<< (line + 1) << ":" << (col + 1) << ": " << message;
} else {
ABSL_LOG(WARNING) << "Warning parsing text-format "
<< root_message_type_->full_name() << ": " << message;
}
} else {
error_collector_->AddWarning(line, col, std::string(message));
}
}
protected:
// Reports an error with the given message with information indicating
// the position (as derived from the current token).
void ReportError(absl::string_view message) {
ReportError(tokenizer_.current().line, tokenizer_.current().column,
message);
}
// Reports a warning with the given message with information indicating
// the position (as derived from the current token).
void ReportWarning(absl::string_view message) {
ReportWarning(tokenizer_.current().line, tokenizer_.current().column,
message);
}
// Consumes the specified message with the given starting delimiter.
// This method checks to see that the end delimiter at the conclusion of
// the consumption matches the starting delimiter passed in here.
bool ConsumeMessage(Message* message, absl::string_view delimiter) {
while (!LookingAt(">") && !LookingAt("}")) {
if (LookingAt("%")) {
DO(ConsumeFieldTemplate(message));
} else {
DO(ConsumeField(message));
}
}
// Confirm that we have a valid ending delimiter.
DO(Consume(delimiter));
return true;
}
// Consume either "<" or "{".
bool ConsumeMessageDelimiter(std::string* delimiter) {
if (TryConsume("<")) {
*delimiter = ">";
} else {
DO(Consume("{"));
*delimiter = "}";
}
return true;
}
#ifndef PROTO2_OPENSOURCE
// Consumes a string value and parses it as a packed repeated field into
// the given field of the given message.
bool ConsumePackedFieldAsString(absl::string_view field_name,
const FieldDescriptor* field,
Message* message) {
std::string packed;
DO(ConsumeString(&packed));
// Prepend field tag and varint-encoded string length to turn into
// encoded message.
std::string tagged;
{
io::StringOutputStream string_output(&tagged);
io::CodedOutputStream coded_output(&string_output);
// Force length-delimited format, even if field not currently packed.
coded_output.WriteTag(internal::WireFormatLite::MakeTag(
field->number(),
internal::WireFormatLite::WIRETYPE_LENGTH_DELIMITED));
coded_output.WriteVarint32(packed.size());
coded_output.WriteString(packed);
}
// Merge encoded message.
io::ArrayInputStream array_input(tagged.data(), tagged.size());
io::CodedInputStream coded_input(&array_input);
if (!message->MergePartialFromCodedStream(&coded_input)) {
ReportError(absl::StrCat("Could not parse packed field \"", field_name,
"\" as wire-encoded string."));
return false;
}
return true;
}
#endif // !PROTO2_OPENSOURCE
// Consumes the current field (as returned by the tokenizer) on the
// passed in message.
bool ConsumeField(Message* message) {
const Reflection* reflection = message->GetReflection();
const Descriptor* descriptor = message->GetDescriptor();
std::string field_name;
bool reserved_field = false;
const FieldDescriptor* field = NULL;
int start_line = tokenizer_.current().line;
int start_column = tokenizer_.current().column;
const FieldDescriptor* any_type_url_field;
const FieldDescriptor* any_value_field;
if (internal::GetAnyFieldDescriptors(*message, &any_type_url_field,
&any_value_field) &&
TryConsume("[")) {
std::string full_type_name, prefix;
DO(ConsumeAnyTypeUrl(&full_type_name, &prefix));
DO(Consume("]"));
TryConsume(":"); // ':' is optional between message labels and values.
std::string serialized_value;
const Descriptor* value_descriptor =
finder_ ? finder_->FindAnyType(*message, prefix, full_type_name)
: DefaultFinderFindAnyType(*message, prefix, full_type_name);
if (value_descriptor == NULL) {
ReportError("Could not find type \"" + prefix + full_type_name +
"\" stored in google.protobuf.Any.");
return false;
}
DO(ConsumeAnyValue(any_value_field, value_descriptor, &serialized_value));
if (singular_overwrite_policy_ == FORBID_SINGULAR_OVERWRITES) {
// Fail if any_type_url_field has already been specified.
if ((!any_type_url_field->is_repeated() &&
reflection->HasField(*message, any_type_url_field)) ||
(!any_value_field->is_repeated() &&
reflection->HasField(*message, any_value_field))) {
ReportError("Non-repeated Any specified multiple times.");
return false;
}
}
reflection->SetString(message, any_type_url_field,
std::string(prefix + full_type_name));
reflection->SetString(message, any_value_field, serialized_value);
return true;
}
if (TryConsume("[")) {
// Extension.
DO(ConsumeFullTypeName(&field_name));
DO(Consume("]"));
field = finder_ ? finder_->FindExtension(message, field_name)
: DefaultFinderFindExtension(message, field_name);
if (field == NULL) {
if (!allow_unknown_field_ && !allow_unknown_extension_) {
ReportError("Extension \"" + field_name +
"\" is not defined or "
"is not an extension of \"" +
descriptor->full_name() + "\".");
return false;
} else {
ReportWarning("Ignoring extension \"" + field_name +
"\" which is not defined or is not an extension of \"" +
descriptor->full_name() + "\".");
}
}
} else {
DO(ConsumeIdentifier(&field_name));
if (allow_field_number_) {
int32_t field_number = std::atoi(field_name.c_str()); // NOLINT
if (descriptor->IsExtensionNumber(field_number)) {
field = reflection->FindKnownExtensionByNumber(field_number);
} else if (descriptor->IsReservedNumber(field_number)) {
reserved_field = true;
} else {
field = descriptor->FindFieldByNumber(field_number);
}
} else {
field = descriptor->FindFieldByName(field_name);
// Group names are expected to be capitalized as they appear in the
// .proto file, which actually matches their type names, not their
// field names.
if (field == NULL) {
std::string lower_field_name = field_name;
absl::AsciiStrToLower(&lower_field_name);
field = descriptor->FindFieldByName(lower_field_name);
// If the case-insensitive match worked but the field is NOT a group,
if (field != NULL && field->type() != FieldDescriptor::TYPE_GROUP) {
field = NULL;
}
}
// Again, special-case group names as described above.
if (field != NULL && field->type() == FieldDescriptor::TYPE_GROUP &&
field->message_type()->name() != field_name) {
field = NULL;
}
if (field == NULL && allow_case_insensitive_field_) {
std::string lower_field_name = field_name;
absl::AsciiStrToLower(&lower_field_name);
field = descriptor->FindFieldByLowercaseName(lower_field_name);
}
if (field == NULL) {
reserved_field = descriptor->IsReservedName(field_name);
}
}
if (field == NULL && !reserved_field) {
if (!allow_unknown_field_) {
ReportError("Message type \"" + descriptor->full_name() +
"\" has no field named \"" + field_name + "\".");
return false;
} else {
ReportWarning("Message type \"" + descriptor->full_name() +
"\" has no field named \"" + field_name + "\".");
}
}
}
// Skips unknown or reserved fields.
if (field == NULL) {
ABSL_CHECK(allow_unknown_field_ || allow_unknown_extension_ ||
reserved_field);
// Try to guess the type of this field.
// If this field is not a message, there should be a ":" between the
// field name and the field value and also the field value should not
// start with "{" or "<" which indicates the beginning of a message body.
// If there is no ":" or there is a "{" or "<" after ":", this field has
// to be a message or the input is ill-formed.
if (TryConsume(":") && !LookingAt("{") && !LookingAt("<")) {
return SkipFieldValue();
} else {
return SkipFieldMessage();
}
}
if (singular_overwrite_policy_ == FORBID_SINGULAR_OVERWRITES) {
// Fail if the field is not repeated and it has already been specified.
if (!field->is_repeated() && reflection->HasField(*message, field)) {
ReportError("Non-repeated field \"" + field_name +
"\" is specified multiple times.");
return false;
}
// Fail if the field is a member of a oneof and another member has already
// been specified.
const OneofDescriptor* oneof = field->containing_oneof();
if (oneof != NULL && reflection->HasOneof(*message, oneof)) {
const FieldDescriptor* other_field =
reflection->GetOneofFieldDescriptor(*message, oneof);
ReportError("Field \"" + field_name +
"\" is specified along with "
"field \"" +
other_field->name() +
"\", another member "
"of oneof \"" +
oneof->name() + "\".");
return false;
}
}
// MediaPipe: Update the field path.
EnterField(field);
// Perform special handling for embedded message types.
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
// ':' is optional here.
bool consumed_semicolon = TryConsume(":");
if (consumed_semicolon && field->options().weak() &&
LookingAtType(io::Tokenizer::TYPE_STRING)) {
// we are getting a bytes string for a weak field.
std::string tmp;
DO(ConsumeString(&tmp));
reflection->MutableMessage(message, field)->ParseFromString(tmp);
goto label_skip_parsing;
}
} else {
// ':' is required here.
DO(Consume(":"));
}
if (field->is_repeated() && TryConsume("[")) {
// Short repeated format, e.g. "foo: [1, 2, 3]".
if (!TryConsume("]")) {
// "foo: []" is treated as empty.
while (true) {
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
// Perform special handling for embedded message types.
DO(ConsumeFieldMessage(message, reflection, field));
} else {
DO(ConsumeFieldValue(message, reflection, field));
}
if (TryConsume("]")) {
break;
}
DO(Consume(","));
}
}
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
DO(ConsumeFieldMessage(message, reflection, field));
#ifndef PROTO2_OPENSOURCE
} else if (field->is_packable() &&
LookingAtType(io::Tokenizer::TYPE_STRING)) {
// Packable field printed as wire-formatted string: "foo: "abc\123"".
// Fields of type string cannot be packed themselves, so this is
// unambiguous.
DO(ConsumePackedFieldAsString(field_name, field, message));
#endif // !PROTO2_OPENSOURCE
} else {
DO(ConsumeFieldValue(message, reflection, field));
}
label_skip_parsing:
// For historical reasons, fields may optionally be separated by commas or
// semicolons.
TryConsume(";") || TryConsume(",");
if (field->options().deprecated()) {
ReportWarning("text format contains deprecated field \"" + field_name +
"\"");
}
// If a parse info tree exists, add the location for the parsed
// field.
if (parse_info_tree_ != NULL) {
parse_info_tree_->RecordLocation(field,
ParseLocation(start_line, start_column));
}
return true;
}
// Skips the next field including the field's name and value.
bool SkipField() {
if (TryConsume("[")) {
// Extension name or type URL.
DO(ConsumeTypeUrlOrFullTypeName());
DO(Consume("]"));
} else {
std::string field_name;
DO(ConsumeIdentifier(&field_name));
}
// Try to guess the type of this field.
// If this field is not a message, there should be a ":" between the
// field name and the field value and also the field value should not
// start with "{" or "<" which indicates the beginning of a message body.
// If there is no ":" or there is a "{" or "<" after ":", this field has
// to be a message or the input is ill-formed.
if (TryConsume(":") && !LookingAt("{") && !LookingAt("<")) {
DO(SkipFieldValue());
} else {
DO(SkipFieldMessage());
}
// For historical reasons, fields may optionally be separated by commas or
// semicolons.
TryConsume(";") || TryConsume(",");
return true;
}
bool ConsumeFieldMessage(Message* message, const Reflection* reflection,
const FieldDescriptor* field) {
if (--recursion_limit_ < 0) {
ReportError("Message is too deep");
return false;
}
// If the parse information tree is not NULL, create a nested one
// for the nested message.
ParseInfoTree* parent = parse_info_tree_;
if (parent) {
parse_info_tree_ = parent->CreateNested(field);
}
// MediaPipe: message value template.
if (LookingAt("%")) {
DO(ConsumeMessageTemplate(message, reflection, field));
} else {
std::string delimiter;
DO(ConsumeMessageDelimiter(&delimiter));
if (field->is_repeated()) {
DO(ConsumeMessage(reflection->AddMessage(message, field), delimiter));
} else {
DO(ConsumeMessage(reflection->MutableMessage(message, field),
delimiter));
}
}
++recursion_limit_;
// Reset the parse information tree.
parse_info_tree_ = parent;
return true;
}
// Skips the whole body of a message including the beginning delimiter and
// the ending delimiter.
bool SkipFieldMessage() {
std::string delimiter;
DO(ConsumeMessageDelimiter(&delimiter));
while (!LookingAt(">") && !LookingAt("}")) {
DO(SkipField());
}
DO(Consume(delimiter));
return true;
}
bool ConsumeFieldValue(Message* message, const Reflection* reflection,
const FieldDescriptor* field) {
// MediaPipe simple value template.
if (LookingAt("%")) {
DO(ConsumeValueTemplate(message, reflection, field));
return true;
}
// Define an easy to use macro for setting fields. This macro checks
// to see if the field is repeated (in which case we need to use the Add
// methods or not (in which case we need to use the Set methods).
#define SET_FIELD(CPPTYPE, VALUE) \
if (field->is_repeated()) { \
reflection->Add##CPPTYPE(message, field, VALUE); \
} else { \
reflection->Set##CPPTYPE(message, field, VALUE); \
}
switch (field->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32: {
int64_t value;
DO(ConsumeSignedInteger(&value, std::numeric_limits<int32_t>::max()));
SET_FIELD(Int32, static_cast<int32_t>(value));
break;
}
case FieldDescriptor::CPPTYPE_UINT32: {
uint64_t value;
DO(ConsumeUnsignedInteger(&value,
std::numeric_limits<uint32_t>::max()));
SET_FIELD(UInt32, static_cast<uint32_t>(value));
break;
}
case FieldDescriptor::CPPTYPE_INT64: {
int64_t value;
DO(ConsumeSignedInteger(&value, std::numeric_limits<int64_t>::max()));
SET_FIELD(Int64, value);
break;
}
case FieldDescriptor::CPPTYPE_UINT64: {
uint64_t value;
DO(ConsumeUnsignedInteger(&value,
std::numeric_limits<uint64_t>::max()));
SET_FIELD(UInt64, value);
break;
}
case FieldDescriptor::CPPTYPE_FLOAT: {
double value;
DO(ConsumeDouble(&value));
SET_FIELD(Float, io::SafeDoubleToFloat(value));
break;
}
case FieldDescriptor::CPPTYPE_DOUBLE: {
double value;
DO(ConsumeDouble(&value));
SET_FIELD(Double, value);
break;
}
case FieldDescriptor::CPPTYPE_STRING: {
std::string value;
DO(ConsumeString(&value));
SET_FIELD(String, value);
break;
}
case FieldDescriptor::CPPTYPE_BOOL: {
if (LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
uint64_t value;
DO(ConsumeUnsignedInteger(&value, 1));
SET_FIELD(Bool, value);
} else {
std::string value;
DO(ConsumeIdentifier(&value));
if (value == "true" || value == "True" || value == "t") {
SET_FIELD(Bool, true);
} else if (value == "false" || value == "False" || value == "f") {
SET_FIELD(Bool, false);
} else {
ReportError("Invalid value for boolean field \"" + field->name() +
"\". Value: \"" + value + "\".");
return false;
}
}
break;
}
case FieldDescriptor::CPPTYPE_ENUM: {
std::string value;
int64_t int_value = std::numeric_limits<int64_t>::max();
const EnumDescriptor* enum_type = field->enum_type();
const EnumValueDescriptor* enum_value = NULL;
if (LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
DO(ConsumeIdentifier(&value));
// Find the enumeration value.
enum_value = enum_type->FindValueByName(value);
} else if (LookingAt("-") ||
LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
DO(ConsumeSignedInteger(&int_value,
std::numeric_limits<int32_t>::max()));
value = absl::StrCat(int_value); // for error reporting
enum_value = enum_type->FindValueByNumber(int_value);
} else {
ReportError("Expected integer or identifier, got: " +
tokenizer_.current().text);
return false;
}
if (enum_value == NULL) {
if (int_value != std::numeric_limits<int64_t>::max() &&
reflection->SupportsUnknownEnumValues()) {
SET_FIELD(EnumValue, int_value);
return true;
} else if (!allow_unknown_enum_) {
ReportError("Unknown enumeration value of \"" + value +
"\" for "
"field \"" +
field->name() + "\".");
return false;
} else {
ReportWarning("Unknown enumeration value of \"" + value +
"\" for "
"field \"" +
field->name() + "\".");
return true;
}
}
SET_FIELD(Enum, enum_value);
break;
}
case FieldDescriptor::CPPTYPE_MESSAGE: {
// We should never get here. Put here instead of a default
// so that if new types are added, we get a nice compiler warning.
ABSL_LOG(FATAL) << "Reached an unintended state: CPPTYPE_MESSAGE";
break;
}
}
#undef SET_FIELD
return true;
}
bool SkipFieldValue() {
if (LookingAtType(io::Tokenizer::TYPE_STRING)) {
while (LookingAtType(io::Tokenizer::TYPE_STRING)) {
tokenizer_.Next();
}
return true;
}
if (TryConsume("[")) {
while (true) {
if (!LookingAt("{") && !LookingAt("<")) {
DO(SkipFieldValue());
} else {
DO(SkipFieldMessage());
}
if (TryConsume("]")) {
break;
}
DO(Consume(","));
}
return true;
}
// Possible field values other than string:
// 12345 => TYPE_INTEGER
// -12345 => TYPE_SYMBOL + TYPE_INTEGER
// 1.2345 => TYPE_FLOAT
// -1.2345 => TYPE_SYMBOL + TYPE_FLOAT
// inf => TYPE_IDENTIFIER
// -inf => TYPE_SYMBOL + TYPE_IDENTIFIER
// TYPE_INTEGER => TYPE_IDENTIFIER
// Divides them into two group, one with TYPE_SYMBOL
// and the other without:
// Group one:
// 12345 => TYPE_INTEGER
// 1.2345 => TYPE_FLOAT
// inf => TYPE_IDENTIFIER
// TYPE_INTEGER => TYPE_IDENTIFIER
// Group two:
// -12345 => TYPE_SYMBOL + TYPE_INTEGER
// -1.2345 => TYPE_SYMBOL + TYPE_FLOAT
// -inf => TYPE_SYMBOL + TYPE_IDENTIFIER
// As we can see, the field value consists of an optional '-' and one of
// TYPE_INTEGER, TYPE_FLOAT and TYPE_IDENTIFIER.
bool has_minus = TryConsume("-");
if (!LookingAtType(io::Tokenizer::TYPE_INTEGER) &&
!LookingAtType(io::Tokenizer::TYPE_FLOAT) &&
!LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
std::string text = tokenizer_.current().text;
ReportError("Cannot skip field value, unexpected token: " + text);
return false;
}
// Combination of '-' and TYPE_IDENTIFIER may result in an invalid field
// value while other combinations all generate valid values.
// We check if the value of this combination is valid here.
// TYPE_IDENTIFIER after a '-' should be one of the float values listed
// below:
// inf, inff, infinity, nan
if (has_minus && LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
std::string text = tokenizer_.current().text;
absl::AsciiStrToLower(&text);
if (text != "inf" &&
#ifndef PROTO2_OPENSOURCE
text != "inff" &&
#endif // !PROTO2_OPENSOURCE
text != "infinity" && text != "nan") {
ReportError("Invalid float number: " + text);
return false;
}
}
tokenizer_.Next();
return true;
}
// Returns true if the current token's text is equal to that specified.
bool LookingAt(const std::string& text) {
return tokenizer_.current().text == text;
}
// Returns true if the current token's type is equal to that specified.
bool LookingAtType(io::Tokenizer::TokenType token_type) {
return tokenizer_.current().type == token_type;
}
// Consumes an identifier and saves its value in the identifier parameter.
// Returns false if the token is not of type IDENTIFIER.
bool ConsumeIdentifier(std::string* identifier) {
if (LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
*identifier = tokenizer_.current().text;
tokenizer_.Next();
return true;
}
// If allow_field_numer_ or allow_unknown_field_ is true, we should able
// to parse integer identifiers.
if ((allow_field_number_ || allow_unknown_field_ ||
allow_unknown_extension_) &&
LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
*identifier = tokenizer_.current().text;
tokenizer_.Next();
return true;
}
ReportError("Expected identifier, got: " + tokenizer_.current().text);
return false;
}
// Consume a string of form "<id1>.<id2>....<idN>".
bool ConsumeFullTypeName(std::string* name) {
DO(ConsumeIdentifier(name));
while (TryConsume(".")) {
std::string part;
DO(ConsumeIdentifier(&part));
*name += ".";
*name += part;
}
return true;
}
bool ConsumeTypeUrlOrFullTypeName() {
std::string discarded;
DO(ConsumeIdentifier(&discarded));
while (TryConsume(".") || TryConsume("/")) {
DO(ConsumeIdentifier(&discarded));
}
return true;
}
// Consumes a string and saves its value in the text parameter.
// Returns false if the token is not of type STRING.
bool ConsumeString(std::string* text) {
if (!LookingAtType(io::Tokenizer::TYPE_STRING)) {
ReportError("Expected string, got: " + tokenizer_.current().text);
return false;
}
text->clear();
while (LookingAtType(io::Tokenizer::TYPE_STRING)) {
io::Tokenizer::ParseStringAppend(tokenizer_.current().text, text);
tokenizer_.Next();
}
return true;
}
// Consumes a uint64 and saves its value in the value parameter.
// Returns false if the token is not of type INTEGER.
bool ConsumeUnsignedInteger(uint64_t* value, uint64_t max_value) {
if (!LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
ReportError("Expected integer, got: " + tokenizer_.current().text);
return false;
}
if (!io::Tokenizer::ParseInteger(tokenizer_.current().text, max_value,
value)) {
ReportError("Integer out of range (" + tokenizer_.current().text + ")");
return false;
}
tokenizer_.Next();
return true;
}
// Consumes an int64 and saves its value in the value parameter.
// Note that since the tokenizer does not support negative numbers,
// we actually may consume an additional token (for the minus sign) in this
// method. Returns false if the token is not an integer
// (signed or otherwise).
bool ConsumeSignedInteger(int64_t* value, uint64_t max_value) {
bool negative = false;
#ifndef PROTO2_OPENSOURCE
if (absl::StartsWith(tokenizer_.current().text, "0x")) {
// proto1 text format allows negative numbers be printed as large positive
// hex values. We accept these values for backward compatibility.
max_value = (max_value << 1) + 1;
}
#endif // !PROTO2_OPENSOURCE
if (TryConsume("-")) {
negative = true;
// Two's complement always allows one more negative integer than
// positive.
++max_value;
}
uint64_t unsigned_value;
DO(ConsumeUnsignedInteger(&unsigned_value, max_value));
if (negative) {
if ((static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1) ==
unsigned_value) {
*value = std::numeric_limits<int64_t>::min();
} else {
*value = -static_cast<int64_t>(unsigned_value);
}
} else {
*value = static_cast<int64_t>(unsigned_value);
}
return true;
}
// Consumes a uint64 and saves its value in the value parameter.
// Accepts decimal numbers only, rejects hex or oct numbers.
bool ConsumeUnsignedDecimalInteger(uint64_t* value, uint64_t max_value) {
if (!LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
ReportError("Expected integer, got: " + tokenizer_.current().text);
return false;
}
const std::string& text = tokenizer_.current().text;
if (IsHexNumber(text) || IsOctNumber(text)) {
ReportError("Expect a decimal number, got: " + text);
return false;
}
if (!io::Tokenizer::ParseInteger(text, max_value, value)) {
ReportError("Integer out of range (" + text + ")");
return false;
}
tokenizer_.Next();
return true;
}
// Consumes a double and saves its value in the value parameter.
// Note that since the tokenizer does not support negative numbers,
// we actually may consume an additional token (for the minus sign) in this
// method. Returns false if the token is not a double
// (signed or otherwise).
bool ConsumeDouble(double* value) {
bool negative = false;
if (TryConsume("-")) {
negative = true;
}
// A double can actually be an integer, according to the tokenizer.
// Therefore, we must check both cases here.
if (LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
// We have found an integer value for the double.
uint64_t integer_value;
DO(ConsumeUnsignedDecimalInteger(&integer_value,
std::numeric_limits<uint64_t>::max()));
*value = static_cast<double>(integer_value);
} else if (LookingAtType(io::Tokenizer::TYPE_FLOAT)) {
// We have found a float value for the double.
*value = io::Tokenizer::ParseFloat(tokenizer_.current().text);
// Mark the current token as consumed.
tokenizer_.Next();
} else if (LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
std::string text = tokenizer_.current().text;
absl::AsciiStrToLower(&text);
if (text == "inf" ||
#ifndef PROTO2_OPENSOURCE
text == "inff" ||
#endif // !PROTO2_OPENSOURCE
text == "infinity") {
*value = std::numeric_limits<double>::infinity();
tokenizer_.Next();
} else if (text == "nan") {
*value = std::numeric_limits<double>::quiet_NaN();
tokenizer_.Next();
} else {
ReportError("Expected double, got: " + text);
return false;
}
} else {
ReportError("Expected double, got: " + tokenizer_.current().text);
return false;
}
if (negative) {
*value = -*value;
}
return true;
}
// Consumes Any::type_url value, of form "type.googleapis.com/full.type.Name"
// or "type.googleprod.com/full.type.Name"
bool ConsumeAnyTypeUrl(std::string* full_type_name, std::string* prefix) {
// TODO Extend Consume() to consume multiple tokens at once, so that
// this code can be written as just DO(Consume(kGoogleApisTypePrefix)).
DO(ConsumeIdentifier(prefix));
while (TryConsume(".")) {
std::string url;
DO(ConsumeIdentifier(&url));
*prefix += "." + url;
}
DO(Consume("/"));
*prefix += "/";
DO(ConsumeFullTypeName(full_type_name));
return true;
}
// A helper function for reconstructing Any::value. Consumes a text of
// full_type_name, then serializes it into serialized_value.
bool ConsumeAnyValue(const FieldDescriptor* field,
const Descriptor* value_descriptor,
std::string* serialized_value) {
if (--recursion_limit_ < 0) {
ReportError("Message is too deep");
return false;
}
// If the parse information tree is not NULL, create a nested one
// for the nested message.
ParseInfoTree* parent = parse_info_tree_;
if (parent) {
parse_info_tree_ = parent->CreateNested(field);
}
const Message* value_prototype = factory_.GetPrototype(value_descriptor);
if (value_prototype == NULL) {
return false;
}
std::unique_ptr<Message> value(value_prototype->New());
std::string sub_delimiter;
DO(ConsumeMessageDelimiter(&sub_delimiter));
DO(ConsumeMessage(value.get(), sub_delimiter));
if (allow_partial_) {
value->AppendPartialToString(serialized_value);
} else {
if (!value->IsInitialized()) {
ReportError(
"Value of type \"" + value_descriptor->full_name() +
"\" stored in google.protobuf.Any has missing required fields");
return false;
}
value->AppendToString(serialized_value);
}
++recursion_limit_;
// Reset the parse information tree.
parse_info_tree_ = parent;
return true;
}
// Consumes a token and confirms that it matches that specified in the
// value parameter. Returns false if the token found does not match that
// which was specified.
bool Consume(absl::string_view value) {
const std::string& current_value = tokenizer_.current().text;
if (current_value != value) {
ReportError(absl::StrCat("Expected \"", value, "\", found \"",
current_value, "\"."));
return false;
}
tokenizer_.Next();
return true;
}
// Attempts to consume the supplied value. Returns false if a the
// token found does not match the value specified.
bool TryConsume(const std::string& value) {
if (tokenizer_.current().text == value) {
tokenizer_.Next();
return true;
} else {
return false;
}
}
// Called when parsing for a field begins.
virtual void EnterField(const FieldDescriptor* field) {}
// Parse and record a template definition for the current field path.
virtual bool ConsumeFieldTemplate(Message* message) { return true; }
// Parse and record a template definition for the current field path.
virtual bool ConsumeMessageTemplate(Message* message,
const Reflection* reflection,
const FieldDescriptor* field) {
return true;
}
// Parse and record a template definition for the current field path.
virtual bool ConsumeValueTemplate(Message* message,
const Reflection* reflection,
const FieldDescriptor* field) {
return true;
}
// An internal instance of the Tokenizer's error collector, used to
// collect any base-level parse errors and feed them to the ParserImpl.
class ParserErrorCollector : public io::ErrorCollector {
public:
explicit ParserErrorCollector(TemplateParser::Parser::ParserImpl* parser)
: parser_(parser) {}
virtual ~ParserErrorCollector() {}
virtual void AddError(int line, int column, const std::string& message) {
parser_->ReportError(line, column, message);
}
virtual void AddWarning(int line, int column, const std::string& message) {
parser_->ReportWarning(line, column, message);
}
private:
TemplateParser::Parser::ParserImpl* parser_;
};
// Factory is stored as a class member to ensure that any Messages generated
// from this factory is destroyed before the factory is destroyed, including
// any member objects of the derived classes (e.g. stowed_messages_).
DynamicMessageFactory factory_;
io::ErrorCollector* error_collector_;
const TextFormat::Finder* finder_;
ParseInfoTree* parse_info_tree_;
ParserErrorCollector tokenizer_error_collector_;
Tokenizer tokenizer_;
const Descriptor* root_message_type_;
SingularOverwritePolicy singular_overwrite_policy_;
const bool allow_case_insensitive_field_;
const bool allow_unknown_field_;
const bool allow_unknown_extension_;
const bool allow_unknown_enum_;
const bool allow_field_number_;
const bool allow_partial_;
int recursion_limit_;
bool had_errors_;
};
namespace {
// Precedence for infix-style operators, matching C operator precedence.
const std::map<std::string, int>& InfixPrecedenceOrder() {
static auto levels = new std::map<std::string, int>{
{".", 1}, {"*", 3}, {"/", 3}, {"+", 4}, {"-", 4},
{">", 6}, {"<", 6}, {">=", 6}, {"<=", 6}, {"==", 7},
{"!=", 7}, {"&&", 11}, {"||", 12}};
return *levels;
}
// Answers whether a token is an infix-style operator.
bool IsInfixOperator(const std::string& token) {
return InfixPrecedenceOrder().count(token) > 0;
}
// A function-style operator, including a for or if expression.
bool IsFunctionOperator(const std::string& token) {
static auto kTokens = new std::set<std::string>{
"min", "max", "for", "if", "!", "concat",
"lowercase", "uppercase", "size", "dict", "list",
};
return kTokens->count(token) > 0;
}
// Merge all fields from a source Message into a destination Message.
// All nested Messages are constructed by the destination Message.
//
// This function is used to copy between a Message produced by the
// GeneratedMessageFactory ("template_rules_"), and a Message produced
// by the DynamicMessageFactory ("output"). These two Messages have
// different Descriptors so Message::MergeFrom cannot be applied directly,
// but they are expected to be equivalent.
absl::Status MergeFields(const Message& source, Message* dest) {
std::unique_ptr<Message> temp(dest->New());
std::string temp_str;
RET_CHECK(TextFormat::PrintToString(source, &temp_str));
RET_CHECK(TextFormat::ParseFromString(temp_str, temp.get()));
dest->MergeFrom(*temp);
return absl::OkStatus();
}
// Returns the (tag, index) pairs in a field path.
// For example, returns {{1, 1}, {2, 1}, {3, 1}} for path "/1[1]/2[1]/3[1]".
absl::Status ProtoPathSplit(const std::string& path,
ProtoUtilLite::ProtoPath* result) {
absl::Status status;
std::vector<std::string> ids = absl::StrSplit(path, '/');
for (const std::string& id : ids) {
if (id.length() > 0) {
std::pair<std::string, std::string> id_pair =
absl::StrSplit(id, absl::ByAnyChar("[]"));
int tag = 0;
int index = 0;
bool ok = absl::SimpleAtoi(id_pair.first, &tag) &&
absl::SimpleAtoi(id_pair.second, &index);
if (!ok) {
status.Update(absl::InvalidArgumentError(path));
}
result->push_back({tag, index});
}
}
return status;
}
// Returns a message serialized deterministically.
bool DeterministicallySerialize(const Message& proto, std::string* result) {
proto_ns::io::StringOutputStream stream(result);
proto_ns::io::CodedOutputStream output(&stream);
output.SetSerializationDeterministic(true);
return proto.SerializeToCodedStream(&output);
}
// Serialize one field of a message.
void SerializeField(const Message* message, const FieldDescriptor* field,
std::vector<ProtoUtilLite::FieldValue>* result) {
ProtoUtilLite::FieldValue message_bytes;
ABSL_CHECK(DeterministicallySerialize(*message, &message_bytes));
ProtoUtilLite::FieldAccess access(
field->number(), static_cast<ProtoUtilLite::FieldType>(field->type()));
MEDIAPIPE_CHECK_OK(access.SetMessage(message_bytes));
*result = *access.mutable_field_values();
}
// Serialize a ProtoPath as a readable string.
// For example, {{1, 1}, {2, 1}, {3, 1}} returns "/1[1]/2[1]/3[1]",
// and {{1, 1}, {2, 1, "INPUT_FRAMES"}} returns "/1[1]/2[@1=INPUT_FRAMES]".
std::string ProtoPathJoin(ProtoPath path) {
std::string result;
for (ProtoUtilLite::ProtoPathEntry& e : path) {
if (e.field_id >= 0) {
absl::StrAppend(&result, "/", e.field_id, "[", e.index, "]");
} else if (e.map_id >= 0) {
absl::StrAppend(&result, "/", e.map_id, "[@", e.key_id, "=", e.key_value,
"]");
}
}
return result;
}
// Returns the message value from a field at an index.
const Message* GetFieldMessage(const Message& message,
const FieldDescriptor* field, int index) {
if (field->type() != FieldDescriptor::TYPE_MESSAGE) {
return nullptr;
}
if (!field->is_repeated()) {
return &message.GetReflection()->GetMessage(message, field);
}
if (index < message.GetReflection()->FieldSize(message, field)) {
return &message.GetReflection()->GetRepeatedMessage(message, field, index);
}
return nullptr;
}
// Returns all FieldDescriptors including extensions.
std::vector<const FieldDescriptor*> GetFields(const Message* src) {
std::vector<const FieldDescriptor*> result;
src->GetDescriptor()->file()->pool()->FindAllExtensions(src->GetDescriptor(),
&result);
for (int i = 0; i < src->GetDescriptor()->field_count(); ++i) {
result.push_back(src->GetDescriptor()->field(i));
}
return result;
}
// Orders map entries in dst to match src.
void OrderMapEntries(const Message* src, Message* dst,
absl::flat_hash_set<const Message*>* seen = nullptr) {
std::unique_ptr<absl::flat_hash_set<const Message*>> seen_owner;
if (!seen) {
seen_owner = std::make_unique<absl::flat_hash_set<const Message*>>();
seen = seen_owner.get();
}
if (seen->count(src) > 0) {
return;
} else {
seen->insert(src);
}
for (auto field : GetFields(src)) {
if (field->is_map()) {
dst->GetReflection()->ClearField(dst, field);
for (int j = 0; j < src->GetReflection()->FieldSize(*src, field); ++j) {
const Message& entry =
src->GetReflection()->GetRepeatedMessage(*src, field, j);
dst->GetReflection()->AddMessage(dst, field)->CopyFrom(entry);
}
}
if (field->type() == FieldDescriptor::TYPE_MESSAGE) {
if (field->is_repeated()) {
for (int j = 0; j < src->GetReflection()->FieldSize(*src, field); ++j) {
OrderMapEntries(
&src->GetReflection()->GetRepeatedMessage(*src, field, j),
dst->GetReflection()->MutableRepeatedMessage(dst, field, j),
seen);
}
} else {
OrderMapEntries(&src->GetReflection()->GetMessage(*src, field),
dst->GetReflection()->MutableMessage(dst, field), seen);
}
}
}
}
// Copies a Message, keeping map entries in order.
std::unique_ptr<Message> CloneMessage(const Message* message) {
std::unique_ptr<Message> result(message->New());
result->CopyFrom(*message);
OrderMapEntries(message, result.get());
return result;
}
using MessageMap = std::map<std::string, std::unique_ptr<Message>>;
// For a non-repeated field, move the most recently parsed field value
// into the most recently parsed template expression.
void StowFieldValue(Message* message, TemplateExpression* expression,
MessageMap* stowed_messages) {
const Reflection* reflection = message->GetReflection();
const Descriptor* descriptor = message->GetDescriptor();
ProtoUtilLite::ProtoPath path;
MEDIAPIPE_CHECK_OK(ProtoPathSplit(expression->path(), &path));
int field_number = path[path.size() - 1].field_id;
const FieldDescriptor* field = descriptor->FindFieldByNumber(field_number);
// Save each stowed message unserialized preserving map entry order.
if (!field->is_repeated() && field->type() == FieldDescriptor::TYPE_MESSAGE) {
(*stowed_messages)[ProtoPathJoin(path)] =
CloneMessage(GetFieldMessage(*message, field, 0));
}
if (!field->is_repeated()) {
std::vector<ProtoUtilLite::FieldValue> field_values;
SerializeField(message, field, &field_values);
*expression->mutable_field_value() = field_values[0];
reflection->ClearField(message, field);
}
}
// Strips first and last quotes from a string.
static void StripQuotes(std::string* str) {
// Strip off the leading and trailing quotation marks from the value, if
// there are any.
if (str->size() > 1 && str->at(0) == str->at(str->size() - 1) &&
(str->at(0) == '\'' || str->at(0) == '\"')) {
str->erase(0, 1);
str->erase(str->size() - 1);
}
}
// Returns the field or extension for field number.
const FieldDescriptor* FindFieldByNumber(const Message* message,
int field_num) {
const FieldDescriptor* result =
message->GetDescriptor()->FindFieldByNumber(field_num);
if (result == nullptr) {
result = message->GetReflection()->FindKnownExtensionByNumber(field_num);
}
return result;
}
// Returns the protobuf map key types from a ProtoPath.
std::vector<FieldType> ProtoPathKeyTypes(ProtoPath path) {
std::vector<FieldType> result;
for (auto& entry : path) {
if (entry.map_id >= 0) {
result.push_back(entry.key_type);
}
}
return result;
}
// Returns the text value for a string or numeric protobuf map key.
std::string GetMapKey(const Message& map_entry) {
auto key_field = map_entry.GetDescriptor()->FindFieldByName("key");
auto reflection = map_entry.GetReflection();
if (key_field->type() == FieldDescriptor::TYPE_STRING) {
return reflection->GetString(map_entry, key_field);
} else if (key_field->type() == FieldDescriptor::TYPE_INT32) {
return absl::StrCat(reflection->GetInt32(map_entry, key_field));
} else if (key_field->type() == FieldDescriptor::TYPE_INT64) {
return absl::StrCat(reflection->GetInt64(map_entry, key_field));
}
return "";
}
// Returns a Message store in CalculatorGraphTemplate::field_value.
Message* FindStowedMessage(MessageMap* stowed_messages, ProtoPath proto_path) {
auto it = stowed_messages->find(ProtoPathJoin(proto_path));
return (it != stowed_messages->end()) ? it->second.get() : nullptr;
}
const Message* GetNestedMessage(const Message& message,
const FieldDescriptor* field,
ProtoPath proto_path,
MessageMap* stowed_messages) {
if (field->type() != FieldDescriptor::TYPE_MESSAGE) {
return nullptr;
}
const Message* result = FindStowedMessage(stowed_messages, proto_path);
if (!result) {
result = GetFieldMessage(message, field, proto_path.back().index);
}
return result;
}
// Adjusts map-entries from indexes to keys.
// Protobuf map-entry order is intentionally not preserved.
absl::Status KeyProtoMapEntries(Message* source, MessageMap* stowed_messages) {
// Copy the rules from the source CalculatorGraphTemplate.
mediapipe::CalculatorGraphTemplate rules;
rules.ParsePartialFromString(source->SerializePartialAsString());
// Only the "source" Message knows all extension types.
Message* config_0 = source->GetReflection()->MutableMessage(
source, source->GetDescriptor()->FindFieldByName("config"), nullptr);
for (int i = 0; i < rules.rule().size(); ++i) {
TemplateExpression* rule = rules.mutable_rule()->Mutable(i);
const Message* message = config_0;
ProtoPath path;
MP_RETURN_IF_ERROR(ProtoPathSplit(rule->path(), &path));
for (int j = 0; j < path.size(); ++j) {
int field_id = path[j].field_id;
const FieldDescriptor* field = FindFieldByNumber(message, field_id);
ProtoPath prefix = {path.begin(), path.begin() + j + 1};
message = GetNestedMessage(*message, field, prefix, stowed_messages);
if (!message) {
break;
}
if (field->is_map()) {
const Message* map_entry = message;
int key_id =
map_entry->GetDescriptor()->FindFieldByName("key")->number();
FieldType key_type = static_cast<ProtoUtilLite::FieldType>(
map_entry->GetDescriptor()->FindFieldByName("key")->type());
std::string key_value = GetMapKey(*map_entry);
path[j] = {field_id, key_id, key_type, key_value};
}
}
if (!rule->path().empty()) {
*rule->mutable_path() = ProtoPathJoin(path);
for (FieldType key_type : ProtoPathKeyTypes(path)) {
*rule->mutable_key_type()->Add() = key_type;
}
}
}
// Copy the rules back into the source CalculatorGraphTemplate.
auto source_rules =
source->GetReflection()->GetMutableRepeatedFieldRef<Message>(
source, source->GetDescriptor()->FindFieldByName("rule"));
source_rules.Clear();
for (auto& rule : rules.rule()) {
source_rules.Add(rule);
}
return absl::OkStatus();
}
} // namespace
class TemplateParser::Parser::MediaPipeParserImpl
: public TemplateParser::Parser::ParserImpl {
using TemplateParser::Parser::ParserImpl::ParserImpl;
bool Parse(Message* output) override {
// Parse protobufs into the output template "config" field.
Message* config = output->GetReflection()->MutableMessage(
output, output->GetDescriptor()->FindFieldByName("config"), nullptr);
bool success = TemplateParser::Parser::ParserImpl::Parse(config);
// Copy the template rules into the output template "rule" field.
success &= MergeFields(template_rules_, output).ok();
// Replace map-entry indexes with map keys.
success &= KeyProtoMapEntries(output, &stowed_messages_).ok();
return success;
}
protected:
void EnterField(const FieldDescriptor* field) override {
RecordFieldPath(*field, parse_info_tree_->GetLastPath(field));
}
// Parse and record a template definition for the current field path.
// The "base message" will be recorded at the field path as well.
bool ConsumeFieldTemplate(Message* message) override {
// find the current field path, including indices.
// record the TemplateExpression at the path.
TemplateExpression* expression = RecordTemplateRule();
DO(Consume("%"));
DO(ConsumeTemplateExpression(expression));
DO(Consume("%"));
// The %param% rule does not consume a field or an %end% tag.
if (expression->op() == "param") {
return true;
}
if (LookingAt("%")) {
DO(ConsumeFieldTemplate(message));
} else {
DO(ConsumeField(message));
StowFieldValue(message, expression, &stowed_messages_);
}
DO(ConsumeEndTemplate());
return true;
}
// Returns a placeholder value for the specified field.
static void GetEmptyFieldValue(const FieldDescriptor* field,
std::vector<ProtoUtilLite::FieldValue>* args) {
auto field_type = static_cast<ProtoUtilLite::FieldType>(field->type());
if (field_type == ProtoUtilLite::FieldType::TYPE_MESSAGE) {
*args = {""};
} else {
constexpr char kPlaceholderValue[] = "1";
MEDIAPIPE_CHECK_OK(
ProtoUtilLite::Serialize({kPlaceholderValue}, field_type, args));
}
}
// Appends one value to the specified field.
static void AppendFieldValue(
Message* message, const FieldDescriptor* field,
const std::vector<ProtoUtilLite::FieldValue>& args) {
auto field_type = static_cast<ProtoUtilLite::FieldType>(field->type());
ProtoUtilLite::FieldValue message_bytes;
ABSL_CHECK(message->SerializePartialToString(&message_bytes));
int count;
MEDIAPIPE_CHECK_OK(ProtoUtilLite::GetFieldCount(
message_bytes, {{field->number(), 0}}, field_type, &count));
MEDIAPIPE_CHECK_OK(ProtoUtilLite::ReplaceFieldRange(
&message_bytes, {{field->number(), count}}, 0, field_type, args));
ABSL_CHECK(message->ParsePartialFromString(message_bytes));
}
// Parse and record a template definition for the current field path.
bool ConsumeValueTemplate(Message* message, const Reflection* reflection,
const FieldDescriptor* field) override {
// Record a TemplateExpression with the current field path.
TemplateExpression* expression = RecordTemplateRule();
DO(Consume("%"));
DO(ConsumeTemplateExpression(expression));
DO(Consume("%"));
RecordFieldPath(*field, parse_info_tree_->GetLastPath(field));
// Leave a dummy value in place of the consumed field.
std::vector<ProtoUtilLite::FieldValue> args;
GetEmptyFieldValue(field, &args);
AppendFieldValue(message, field, args);
return true;
}
// Parse and record a template definition for the current field path.
bool ConsumeMessageTemplate(Message* message, const Reflection* reflection,
const FieldDescriptor* field) override {
// Record a TemplateExpression with the current message path.
TemplateExpression* expression = RecordTemplateRule();
DO(Consume("%"));
DO(ConsumeTemplateExpression(expression));
DO(Consume("%"));
RecordFieldPath(*field, parse_info_tree_->GetPath());
// Leave a dummy value in place of the consumed field.
std::vector<ProtoUtilLite::FieldValue> args;
GetEmptyFieldValue(field, &args);
AppendFieldValue(message, field, args);
return true;
}
// Parse %end%.
bool ConsumeEndTemplate() {
DO(Consume("%"));
DO(Consume("end"));
DO(Consume("%"));
return true;
}
// Groups one infix operation according to operator precedence.
// Groups the new rhs expression with previous rhs expressions if needed.
void GroupOperator(const TemplateExpression& lhs, const std::string& op,
const TemplateExpression& rhs,
TemplateExpression* result) {
if (IsInfixOperator(lhs.op()) &&
InfixPrecedenceOrder().at(lhs.op()) > InfixPrecedenceOrder().at(op)) {
result->set_op(lhs.op());
(*result->add_arg()) = lhs.arg(0);
GroupOperator(lhs.arg(1), op, rhs, result->add_arg());
} else {
result->set_op(op);
(*result->add_arg()) = lhs;
(*result->add_arg()) = rhs;
}
}
// Parses a series of infix-style operations.
bool ConsumeInfixExpression(TemplateExpression* result) {
while (IsInfixOperator(tokenizer_.current().text)) {
TemplateExpression lhs = *result;
(*result) = TemplateExpression();
std::string op = tokenizer_.current().text;
tokenizer_.Next();
TemplateExpression rhs;
DO(ConsumePrefixExpression(&rhs));
GroupOperator(lhs, op, rhs, result);
}
return true;
}
// Parses a template function-style operation.
bool ConsumeFunctionExpression(TemplateExpression* result) {
std::string function_name = tokenizer_.current().text;
tokenizer_.Next();
result->set_op(function_name);
DO(Consume("("));
bool success = true;
while (true) {
if (TryConsume(")")) {
break;
}
if (!result->mutable_arg()->empty()) {
success &= TryConsume(",") || TryConsume(":");
}
TemplateExpression arg;
DO(ConsumeTemplateExpression(&arg));
(*result->mutable_arg()->Add()) = arg;
}
return success;
}
// Parses a template parameter declaration.
bool ConsumeParameterDeclaration(TemplateExpression* result) {
DO(Consume("param"));
result->set_op("param");
std::string param_name;
DO(ConsumeIdentifier(¶m_name));
result->add_arg()->set_param(param_name);
if (TryConsume(":")) {
DO(ConsumeTemplateExpression(result->add_arg()));
}
return true;
}
// Parses a template parameter reference.
bool ConsumeParameterExpression(TemplateExpression* result) {
std::string param_name;
DO(ConsumeIdentifier(¶m_name));
result->set_param(param_name);
return true;
}
// Parses a numeric or a string literal.
bool ConsumeLiteral(TemplateExpression* result) {
std::string token = tokenizer_.current().text;
StripQuotes(&token);
result->set_op("literal");
result->set_param(token);
tokenizer_.Next();
return true;
}
// Parses a parenthesized expression.
bool ConsumeGroupedExpression(TemplateExpression* result) {
DO(Consume("("));
result->set_op("paren");
DO(ConsumeTemplateExpression(result->add_arg()));
DO(Consume(")"));
return true;
}
// Parses a TemplateExpression apart from infix operators.
bool ConsumePrefixExpression(TemplateExpression* result) {
if (LookingAt("(")) {
return ConsumeGroupedExpression(result);
}
if (tokenizer_.current().text == "param") {
return ConsumeParameterDeclaration(result);
}
if (IsFunctionOperator(tokenizer_.current().text)) {
return ConsumeFunctionExpression(result);
}
if (LookingAtType(io::Tokenizer::TYPE_INTEGER) ||
LookingAtType(io::Tokenizer::TYPE_FLOAT) ||
LookingAtType(io::Tokenizer::TYPE_STRING)) {
return ConsumeLiteral(result);
}
return ConsumeParameterExpression(result);
}
// Parses template parameter names and operators.
bool ConsumeTemplateExpression(TemplateExpression* result) {
bool success = ConsumePrefixExpression(result);
if (IsInfixOperator(tokenizer_.current().text)) {
return ConsumeInfixExpression(result);
}
return success;
}
// Records a template expression for the current field-path.
TemplateExpression* RecordTemplateRule() {
return template_rules_.mutable_rule()->Add();
}
// Records the field path and field type for the rule or rules targeting
// a certain field.
void RecordFieldPath(const FieldDescriptor& field, const std::string& path) {
for (int i = template_rules_.rule().size() - 1; i >= 0; --i) {
auto rule = template_rules_.mutable_rule()->Mutable(i);
if (rule->has_path() || rule->op() == "param") {
break;
}
rule->set_path(path);
rule->set_field_type(
static_cast<mediapipe::FieldDescriptorProto::Type>(field.type()));
}
}
mediapipe::CalculatorGraphTemplate template_rules_;
std::map<std::string, std::unique_ptr<Message>> stowed_messages_;
};
#undef DO
// ===========================================================================
TemplateParser::Parser::Parser()
: error_collector_(nullptr),
finder_(nullptr),
parse_info_tree_(nullptr),
allow_partial_(false),
allow_case_insensitive_field_(false),
allow_unknown_field_(false),
allow_unknown_enum_(false),
allow_field_number_(false),
allow_relaxed_whitespace_(false),
allow_singular_overwrites_(false) {
parse_info_tree_ = new ParseInfoTree();
}
TemplateParser::Parser::~Parser() { delete parse_info_tree_; }
bool TemplateParser::Parser::Parse(io::ZeroCopyInputStream* input,
Message* output) {
output->Clear();
ParserImpl::SingularOverwritePolicy overwrites_policy =
allow_singular_overwrites_ ? ParserImpl::ALLOW_SINGULAR_OVERWRITES
: ParserImpl::FORBID_SINGULAR_OVERWRITES;
int recursion_limit = std::numeric_limits<int>::max();
bool allow_unknown_extension = false;
MediaPipeParserImpl parser(
output->GetDescriptor(), input, error_collector_, finder_,
parse_info_tree_, overwrites_policy, allow_case_insensitive_field_,
allow_unknown_field_, allow_unknown_extension, allow_unknown_enum_,
allow_field_number_, allow_relaxed_whitespace_, allow_partial_,
recursion_limit);
return MergeUsingImpl(input, output, &parser);
}
bool TemplateParser::Parser::ParseFromString(const std::string& input,
Message* output) {
io::ArrayInputStream input_stream(input.data(), input.size());
return Parse(&input_stream, output);
}
bool TemplateParser::Parser::Merge(io::ZeroCopyInputStream* input,
Message* output) {
int recursion_limit = std::numeric_limits<int>::max();
bool allow_unknown_extension = false;
MediaPipeParserImpl parser(
output->GetDescriptor(), input, error_collector_, finder_,
parse_info_tree_, ParserImpl::ALLOW_SINGULAR_OVERWRITES,
allow_case_insensitive_field_, allow_unknown_field_,
allow_unknown_extension, allow_unknown_enum_, allow_field_number_,
allow_relaxed_whitespace_, allow_partial_, recursion_limit);
return MergeUsingImpl(input, output, &parser);
}
bool TemplateParser::Parser::MergeFromString(const std::string& input,
Message* output) {
io::ArrayInputStream input_stream(input.data(), input.size());
return Merge(&input_stream, output);
}
bool TemplateParser::Parser::MergeUsingImpl(
io::ZeroCopyInputStream* /* input */, Message* output,
ParserImpl* parser_impl) {
if (!parser_impl->Parse(output)) return false;
if (!allow_partial_ && !output->IsInitialized()) {
std::vector<std::string> missing_fields;
output->FindInitializationErrors(&missing_fields);
parser_impl->ReportError(-1, 0,
"Message missing required fields: " +
absl::StrJoin(missing_fields, ", "));
return false;
}
return true;
}
bool TemplateParser::Parser::ParseFieldValueFromString(
const std::string& input, const FieldDescriptor* field, Message* output) {
io::ArrayInputStream input_stream(input.data(), input.size());
int recursion_limit = std::numeric_limits<int>::max();
bool allow_unknown_extension = false;
ParserImpl parser(
output->GetDescriptor(), &input_stream, error_collector_, finder_,
parse_info_tree_, ParserImpl::ALLOW_SINGULAR_OVERWRITES,
allow_case_insensitive_field_, allow_unknown_field_,
allow_unknown_extension, allow_unknown_enum_, allow_field_number_,
allow_relaxed_whitespace_, allow_partial_, recursion_limit);
return parser.ParseField(field, output);
}
} // namespace tool
} // namespace mediapipe