# MediaPipe graph that performs face mesh with TensorFlow Lite on GPU.
# GPU buffer. (GpuBuffer)
input_stream: "input_video"
# Output image with rendered results. (GpuBuffer)
output_stream: "output_video"
# Detected faces. (std::vector<Detection>)
output_stream: "face_detections"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for downstream nodes
# (calculators and subgraphs) in the graph to finish their tasks before it
# passes through another image. All images that come in while waiting are
# dropped, limiting the number of in-flight images in most part of the graph to
# 1. This prevents the downstream nodes from queuing up incoming images and data
# excessively, which leads to increased latency and memory usage, unwanted in
# real-time mobile applications. It also eliminates unnecessarily computation,
# e.g., the output produced by a node may get dropped downstream if the
# subsequent nodes are still busy processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Subgraph that detects faces.
node {
calculator: "FaceDetectionShortRangeGpu"
input_stream: "IMAGE:throttled_input_video"
output_stream: "DETECTIONS:face_detections"
}
# Converts the detections to drawing primitives for annotation overlay.
node {
calculator: "DetectionsToRenderDataCalculator"
input_stream: "DETECTIONS:face_detections"
output_stream: "RENDER_DATA:render_data"
node_options: {
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
thickness: 4.0
color { r: 255 g: 0 b: 0 }
}
}
}
# Draws annotations and overlays them on top of the input images.
node {
calculator: "AnnotationOverlayCalculator"
input_stream: "IMAGE_GPU:throttled_input_video"
input_stream: "render_data"
output_stream: "IMAGE_GPU:output_video"
}