# MediaPipe graph that performs hand detection on desktop with TensorFlow Lite
# on CPU.
# Used in the example in
# mediapipie/examples/desktop/hand_tracking:hand_detection_tflite.
# max_queue_size limits the number of packets enqueued on any input stream
# by throttling inputs to the graph. This makes the graph only process one
# frame per time.
max_queue_size: 1
# Decodes an input video file into images and a video header.
node {
calculator: "OpenCvVideoDecoderCalculator"
input_side_packet: "INPUT_FILE_PATH:input_video_path"
output_stream: "VIDEO:input_video"
output_stream: "VIDEO_PRESTREAM:input_video_header"
}
# Detects palms.
node {
calculator: "PalmDetectionCpu"
input_stream: "IMAGE:input_video"
output_stream: "DETECTIONS:output_detections"
}
# Converts the detections to drawing primitives for annotation overlay.
node {
calculator: "DetectionsToRenderDataCalculator"
input_stream: "DETECTIONS:output_detections"
output_stream: "RENDER_DATA:render_data"
node_options: {
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
thickness: 4.0
color { r: 0 g: 255 b: 0 }
}
}
}
# Draws annotations and overlays them on top of the original image coming into
# the graph.
node {
calculator: "AnnotationOverlayCalculator"
input_stream: "IMAGE:input_video"
input_stream: "render_data"
output_stream: "IMAGE:output_video"
}
# Encodes the annotated images into a video file, adopting properties specified
# in the input video header, e.g., video framerate.
node {
calculator: "OpenCvVideoEncoderCalculator"
input_stream: "VIDEO:output_video"
input_stream: "VIDEO_PRESTREAM:input_video_header"
input_side_packet: "OUTPUT_FILE_PATH:output_video_path"
node_options: {
[type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: {
codec: "avc1"
video_format: "mp4"
}
}
}