// Copyright 2020 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <unordered_map>
#include <vector>
#include "Eigen/Dense"
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_format.h"
#include "absl/types/span.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/deps/file_path.h"
#include "mediapipe/framework/port/opencv_core_inc.h"
#include "mediapipe/framework/port/ret_check.h"
#include "mediapipe/modules/objectron/calculators/annotation_data.pb.h"
#include "mediapipe/modules/objectron/calculators/belief_decoder_config.pb.h"
#include "mediapipe/modules/objectron/calculators/decoder.h"
#include "mediapipe/modules/objectron/calculators/tensor_util.h"
#include "mediapipe/modules/objectron/calculators/tflite_tensors_to_objects_calculator.pb.h"
#include "tensorflow/lite/interpreter.h"
namespace {
constexpr char kInputStreamTag[] = "TENSORS";
constexpr char kOutputStreamTag[] = "ANNOTATIONS";
// Each detection object will be assigned an unique id that starts from 1.
static int object_id = 0;
inline int GetNextObjectId() { return ++object_id; }
} // namespace
namespace mediapipe {
// Convert result TFLite tensors from deep pursuit 3d model into
// FrameAnnotation.
//
// Input:
// TENSORS - Vector of TfLiteTensor of type kTfLiteFloat32.
// Output:
// ANNOTATIONS - Result FrameAnnotation.
//
// Usage example:
// node {
// calculator: "TfLiteTensorsToObjectsCalculator"
// input_stream: "TENSORS:tensors"
// output_stream: "ANNOTATIONS:annotations"
// }
class TfLiteTensorsToObjectsCalculator : public CalculatorBase {
public:
static absl::Status GetContract(CalculatorContract* cc);
absl::Status Open(CalculatorContext* cc) override;
absl::Status Process(CalculatorContext* cc) override;
absl::Status Close(CalculatorContext* cc) override;
private:
absl::Status ProcessCPU(CalculatorContext* cc,
FrameAnnotation* output_objects);
absl::Status LoadOptions(CalculatorContext* cc);
// Takes point_3d in FrameAnnotation, projects to 2D, and overwrite the
// point_2d field with the projection.
void Project3DTo2D(bool portrait, FrameAnnotation* annotation) const;
// Increment and assign object ID for each detected object.
// In a single MediaPipe session, the IDs are unique.
// Also assign timestamp for the FrameAnnotation to be the input packet
// timestamp.
void AssignObjectIdAndTimestamp(int64_t timestamp_us,
FrameAnnotation* annotation);
int num_classes_ = 0;
int num_keypoints_ = 0;
::mediapipe::TfLiteTensorsToObjectsCalculatorOptions options_;
std::unique_ptr<Decoder> decoder_;
Eigen::Matrix<float, 4, 4, Eigen::RowMajor> projection_matrix_;
};
REGISTER_CALCULATOR(TfLiteTensorsToObjectsCalculator);
absl::Status TfLiteTensorsToObjectsCalculator::GetContract(
CalculatorContract* cc) {
RET_CHECK(!cc->Inputs().GetTags().empty());
RET_CHECK(!cc->Outputs().GetTags().empty());
if (cc->Inputs().HasTag(kInputStreamTag)) {
cc->Inputs().Tag(kInputStreamTag).Set<std::vector<TfLiteTensor>>();
}
if (cc->Outputs().HasTag(kOutputStreamTag)) {
cc->Outputs().Tag(kOutputStreamTag).Set<FrameAnnotation>();
}
return absl::OkStatus();
}
absl::Status TfLiteTensorsToObjectsCalculator::Open(CalculatorContext* cc) {
MP_RETURN_IF_ERROR(LoadOptions(cc));
// Load camera intrinsic matrix.
const float fx = options_.normalized_focal_x();
const float fy = options_.normalized_focal_y();
const float px = options_.normalized_principal_point_x();
const float py = options_.normalized_principal_point_y();
// clang-format off
projection_matrix_ << fx, 0., px, 0.,
0., fy, py, 0.,
0., 0., -1., 0.,
0., 0., -1., 0.;
// clang-format on
decoder_ = absl::make_unique<Decoder>(
BeliefDecoderConfig(options_.decoder_config()));
return absl::OkStatus();
}
absl::Status TfLiteTensorsToObjectsCalculator::Process(CalculatorContext* cc) {
if (cc->Inputs().Tag(kInputStreamTag).IsEmpty()) {
return absl::OkStatus();
}
auto output_objects = absl::make_unique<FrameAnnotation>();
MP_RETURN_IF_ERROR(ProcessCPU(cc, output_objects.get()));
// Output
if (cc->Outputs().HasTag(kOutputStreamTag)) {
cc->Outputs()
.Tag(kOutputStreamTag)
.Add(output_objects.release(), cc->InputTimestamp());
}
return absl::OkStatus();
}
absl::Status TfLiteTensorsToObjectsCalculator::ProcessCPU(
CalculatorContext* cc, FrameAnnotation* output_objects) {
const auto& input_tensors =
cc->Inputs().Tag(kInputStreamTag).Get<std::vector<TfLiteTensor>>();
cv::Mat prediction_heatmap = ConvertTfliteTensorToCvMat(input_tensors[0]);
cv::Mat offsetmap = ConvertTfliteTensorToCvMat(input_tensors[1]);
*output_objects =
decoder_->DecodeBoundingBoxKeypoints(prediction_heatmap, offsetmap);
auto status = decoder_->Lift2DTo3D(projection_matrix_, /*portrait*/ true,
output_objects);
if (!status.ok()) {
ABSL_LOG(ERROR) << status;
return status;
}
Project3DTo2D(/*portrait*/ true, output_objects);
AssignObjectIdAndTimestamp(cc->InputTimestamp().Microseconds(),
output_objects);
return absl::OkStatus();
}
absl::Status TfLiteTensorsToObjectsCalculator::Close(CalculatorContext* cc) {
return absl::OkStatus();
}
absl::Status TfLiteTensorsToObjectsCalculator::LoadOptions(
CalculatorContext* cc) {
// Get calculator options specified in the graph.
options_ =
cc->Options<::mediapipe::TfLiteTensorsToObjectsCalculatorOptions>();
num_classes_ = options_.num_classes();
num_keypoints_ = options_.num_keypoints();
// Currently only support 2D when num_values_per_keypoint equals to 2.
ABSL_CHECK_EQ(options_.num_values_per_keypoint(), 2);
return absl::OkStatus();
}
void TfLiteTensorsToObjectsCalculator::Project3DTo2D(
bool portrait, FrameAnnotation* annotation) const {
for (auto& ann : *annotation->mutable_annotations()) {
for (auto& key_point : *ann.mutable_keypoints()) {
Eigen::Vector4f point3d;
point3d << key_point.point_3d().x(), key_point.point_3d().y(),
key_point.point_3d().z(), 1.0f;
Eigen::Vector4f point3d_projection = projection_matrix_ * point3d;
float u, v;
const float inv_w = 1.0f / point3d_projection(3);
if (portrait) {
u = (point3d_projection(1) * inv_w + 1.0f) * 0.5f;
v = (point3d_projection(0) * inv_w + 1.0f) * 0.5f;
} else {
u = (point3d_projection(0) * inv_w + 1.0f) * 0.5f;
v = (1.0f - point3d_projection(1) * inv_w) * 0.5f;
}
key_point.mutable_point_2d()->set_x(u);
key_point.mutable_point_2d()->set_y(v);
}
}
}
void TfLiteTensorsToObjectsCalculator::AssignObjectIdAndTimestamp(
int64_t timestamp_us, FrameAnnotation* annotation) {
for (auto& ann : *annotation->mutable_annotations()) {
ann.set_object_id(GetNextObjectId());
}
annotation->set_timestamp(timestamp_us);
}
} // namespace mediapipe