chromium/third_party/mediapipe/src/mediapipe/modules/objectron/objectron_cpu.pbtxt

# MediaPipe Objectron on CPU that produces 3D bounding boxes for objects.
type: "ObjectronCpuSubgraph"

# Input/Output streams and input side packets.
input_stream: "IMAGE:image"
# Path to TfLite model for 3D bounding box landmark prediction
input_side_packet: "MODEL_PATH:box_landmark_model_path"
# Allowed category labels, e.g. Footwear, Coffee cup, Mug, Chair, Camera
input_side_packet: "LABELS_CSV:allowed_labels"
# Max number of objects to detect/track. (int)
input_side_packet: "MAX_NUM_OBJECTS:max_num_objects"
# Whether landmarks on the previous image should be used to help localize
# landmarks on the current image. (bool)
input_side_packet: "USE_PREV_LANDMARKS:use_prev_landmarks"
# Bounding box landmarks topology definition.
# The numbers are indices in the box_landmarks list.
#
#       3 + + + + + + + + 7
#       +\                +\          UP
#       + \               + \
#       +  \              +  \        |
#       +   4 + + + + + + + + 8       | y
#       +   +             +   +       |
#       +   +             +   +       |
#       +   +     (0)     +   +       .------- x
#       +   +             +   +        \
#       1 + + + + + + + + 5   +         \
#        \  +              \  +          \ z
#         \ +               \ +           \
#          \+                \+
#           2 + + + + + + + + 6

# Collection of detected 3D objects, represented as a FrameAnnotation.
output_stream: "FRAME_ANNOTATION:detected_objects"
# Collection of box landmarks. (NormalizedLandmarkList)
output_stream: "MULTI_LANDMARKS:multi_box_landmarks"
# Crop rectangles derived from bounding box landmarks.
output_stream: "NORM_RECTS:multi_box_rects"

# Loads the file in the specified path into a blob.
node {
  calculator: "LocalFileContentsCalculator"
  input_side_packet: "FILE_PATH:0:box_landmark_model_path"
  output_side_packet: "CONTENTS:0:box_landmark_model_blob"
}

# Converts the input blob into a TF Lite model.
node {
  calculator: "TfLiteModelCalculator"
  input_side_packet: "MODEL_BLOB:box_landmark_model_blob"
  output_side_packet: "MODEL:box_landmark_model"
}

# When the optional input side packet "use_prev_landmarks" is either absent or
# set to true, uses the landmarks on the previous image to help localize
# landmarks on the current image.
node {
  calculator: "GateCalculator"
  input_side_packet: "ALLOW:use_prev_landmarks"
  input_stream: "prev_box_rects_from_landmarks"
  output_stream: "gated_prev_box_rects_from_landmarks"
  options: {
    [mediapipe.GateCalculatorOptions.ext] {
      allow: true
    }
  }
}

# Determines if an input vector of NormalizedRect has a size greater than or
# equal to the provided max_num_objects.
node {
  calculator: "NormalizedRectVectorHasMinSizeCalculator"
  input_stream: "ITERABLE:gated_prev_box_rects_from_landmarks"
  input_side_packet: "max_num_objects"
  output_stream: "prev_has_enough_objects"
}

# Drops the incoming image if BoxLandmarkSubgraph was able to identify box
# presence in the previous image. Otherwise, passes the incoming image through
# to trigger a new round of box detection in ObjectDetectionOidV4Subgraph.
node {
  calculator: "GateCalculator"
  input_stream: "image"
  input_stream: "DISALLOW:prev_has_enough_objects"
  output_stream: "detection_image"

  options: {
    [mediapipe.GateCalculatorOptions.ext] {
      empty_packets_as_allow: true
    }
  }
}

# Subgraph that performs 2D object detection.
node {
  calculator: "ObjectDetectionOidV4Subgraph"
  input_stream: "IMAGE:detection_image"
  input_side_packet: "LABELS_CSV:allowed_labels"
  output_stream: "DETECTIONS:raw_detections"
}

# Makes sure there are no more detections than provided max_num_objects.
node {
  calculator: "ClipDetectionVectorSizeCalculator"
  input_stream: "raw_detections"
  output_stream: "detections"
  input_side_packet: "max_num_objects"

}

# Extracts image size from the input images.
node {
  calculator: "ImagePropertiesCalculator"
  input_stream: "IMAGE_CPU:image"
  output_stream: "SIZE:image_size"
}

# Converts results of box detection into rectangles (normalized by image size)
# that encloses the box.
node {
  calculator: "DetectionsToRectsCalculator"
  input_stream: "DETECTIONS:detections"
  input_stream: "IMAGE_SIZE:image_size"
  output_stream: "NORM_RECTS:box_rects_from_detections"
  options: {
    [mediapipe.DetectionsToRectsCalculatorOptions.ext] {
      output_zero_rect_for_empty_detections: false
    }
  }
}

# Performs association between NormalizedRect vector elements from previous
# image and rects based on object detections from the current image. This
# calculator ensures that the output box_rects vector doesn't contain
# overlapping regions based on the specified min_similarity_threshold.
node {
  calculator: "AssociationNormRectCalculator"
  input_stream: "box_rects_from_detections"
  input_stream: "gated_prev_box_rects_from_landmarks"
  output_stream: "multi_box_rects"
  options: {
    [mediapipe.AssociationCalculatorOptions.ext] {
      min_similarity_threshold: 0.2
    }
  }
}

# Outputs each element of box_rects at a fake timestamp for the rest of the
# graph to process. Clones image and image size packets for each
# single_box_rect at the fake timestamp. At the end of the loop, outputs the
# BATCH_END timestamp for downstream calculators to inform them that all
# elements in the vector have been processed.
node {
  calculator: "BeginLoopNormalizedRectCalculator"
  input_stream: "ITERABLE:multi_box_rects"
  input_stream: "CLONE:image"
  output_stream: "ITEM:single_box_rect"
  output_stream: "CLONE:landmarks_image"
  output_stream: "BATCH_END:box_rects_timestamp"
}

# Subgraph that localizes box landmarks.
node {
  calculator: "BoxLandmarkSubgraph"
  input_stream: "IMAGE:landmarks_image"
  input_side_packet: "MODEL:box_landmark_model"
  input_stream: "NORM_RECT:single_box_rect"
  output_stream: "NORM_LANDMARKS:single_box_landmarks"
}

# Collects a set of landmarks for each hand into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of landmarks at the BATCH_END
# timestamp.
node {
  calculator: "EndLoopNormalizedLandmarkListVectorCalculator"
  input_stream: "ITEM:single_box_landmarks"
  input_stream: "BATCH_END:box_rects_timestamp"
  output_stream: "ITERABLE:multi_box_landmarks"
}

# Convert box landmarks to frame annotations.
node {
  calculator: "LandmarksToFrameAnnotationCalculator"
  input_stream: "MULTI_LANDMARKS:multi_box_landmarks"
  output_stream: "FRAME_ANNOTATION:box_annotations"
}

# Lift the 2D landmarks to 3D using EPnP algorithm.
node {
  name: "Lift2DFrameAnnotationTo3DCalculator"
  calculator: "Lift2DFrameAnnotationTo3DCalculator"
  input_stream: "FRAME_ANNOTATION:box_annotations"
  output_stream: "LIFTED_FRAME_ANNOTATION:detected_objects"
  options: {
    [mediapipe.Lift2DFrameAnnotationTo3DCalculatorOptions.ext] {
      normalized_focal_x: 1.0
      normalized_focal_y: 1.0
    }
  }
}

# Get rotated rectangle from detected box.
node {
  calculator: "FrameAnnotationToRectCalculator"
  input_stream: "FRAME_ANNOTATION:detected_objects"
  output_stream: "NORM_RECTS:box_rects_from_landmarks"
}

# Caches a box rectangle fed back from boxLandmarkSubgraph, and upon the
# arrival of the next input image sends out the cached rectangle with the
# timestamp replaced by that of the input image, essentially generating a packet
# that carries the previous box rectangle. Note that upon the arrival of the
# very first input image, an empty packet is sent out to jump start the
# feedback loop.
node {
  calculator: "PreviousLoopbackCalculator"
  input_stream: "MAIN:image"
  input_stream: "LOOP:box_rects_from_landmarks"
  input_stream_info: {
    tag_index: "LOOP"
    back_edge: true
  }
  output_stream: "PREV_LOOP:prev_box_rects_from_landmarks"
}