# MediaPipe graph to perform selfie segmentation.
type: "SelfieSegmentationCpuImage"
# Input image. (Image)
input_stream: "IMAGE:image"
# The throttled input image. (Image)
output_stream: "IMAGE:throttled_image"
# An integer 0 or 1. Use 0 to select a general-purpose model (operating on a
# 256x256 tensor), and 1 to select a model (operating on a 256x144 tensor) more
# optimized for landscape images. If unspecified, functions as set to 0. (int)
input_side_packet: "MODEL_SELECTION:model_selection"
# Segmentation mask. (Image)
output_stream: "SEGMENTATION_MASK:segmentation_mask"
node {
calculator: "FlowLimiterCalculator"
input_stream: "image"
input_stream: "FINISHED:segmentation_mask"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_image"
options: {
[mediapipe.FlowLimiterCalculatorOptions.ext] {
max_in_flight: 1
max_in_queue: 1
}
}
}
# Converts Image to ImageFrame for SelfieSegmentationCpu to consume.
node {
calculator: "FromImageCalculator"
input_stream: "IMAGE:throttled_image"
output_stream: "IMAGE_CPU:raw_image_frame"
output_stream: "SOURCE_ON_GPU:is_gpu_image"
}
# TODO: Remove the extra flipping once adopting MlImage.
# If the source images are on gpu, flip the data vertically before sending them
# into SelfieSegmentationCpu. This maybe needed because OpenGL represents images
# assuming the image origin is at the bottom-left corner, whereas MediaPipe in
# general assumes the image origin is at the top-left corner.
node: {
calculator: "ImageTransformationCalculator"
input_stream: "IMAGE:raw_image_frame"
input_stream: "FLIP_VERTICALLY:is_gpu_image"
output_stream: "IMAGE:image_frame"
}
node {
calculator: "SelfieSegmentationCpu"
input_side_packet: "MODEL_SELECTION:model_selection"
input_stream: "IMAGE:image_frame"
output_stream: "SEGMENTATION_MASK:segmentation_mask_image_frame"
}
node {
calculator: "ToImageCalculator"
input_stream: "IMAGE_CPU:segmentation_mask_image_frame"
output_stream: "IMAGE:segmentation_mask"
}