// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/util/annotation_renderer.h"
#include <math.h>
#include <algorithm>
#include <cmath>
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "mediapipe/framework/port/logging.h"
#include "mediapipe/framework/port/vector.h"
#include "mediapipe/util/color.pb.h"
#include "mediapipe/util/render_data.pb.h"
namespace mediapipe {
namespace {
using Arrow = RenderAnnotation::Arrow;
using FilledOval = RenderAnnotation::FilledOval;
using FilledRectangle = RenderAnnotation::FilledRectangle;
using FilledRoundedRectangle = RenderAnnotation::FilledRoundedRectangle;
using Point = RenderAnnotation::Point;
using Line = RenderAnnotation::Line;
using GradientLine = RenderAnnotation::GradientLine;
using Oval = RenderAnnotation::Oval;
using Rectangle = RenderAnnotation::Rectangle;
using RoundedRectangle = RenderAnnotation::RoundedRectangle;
using Text = RenderAnnotation::Text;
int ClampThickness(int thickness) {
constexpr int kMaxThickness = 32767; // OpenCV MAX_THICKNESS
return std::clamp(thickness, 1, kMaxThickness);
}
bool NormalizedtoPixelCoordinates(double normalized_x, double normalized_y,
int image_width, int image_height, int* x_px,
int* y_px) {
ABSL_CHECK(x_px != nullptr);
ABSL_CHECK(y_px != nullptr);
ABSL_CHECK_GT(image_width, 0);
ABSL_CHECK_GT(image_height, 0);
if (normalized_x < 0 || normalized_x > 1.0 || normalized_y < 0 ||
normalized_y > 1.0) {
VLOG(1) << "Normalized coordinates must be between 0.0 and 1.0";
}
*x_px = static_cast<int32_t>(round(normalized_x * image_width));
*y_px = static_cast<int32_t>(round(normalized_y * image_height));
return true;
}
cv::Scalar MediapipeColorToOpenCVColor(const Color& color) {
return cv::Scalar(color.r(), color.g(), color.b());
}
cv::RotatedRect RectangleToOpenCVRotatedRect(int left, int top, int right,
int bottom, double rotation) {
return cv::RotatedRect(
cv::Point2f((left + right) / 2.f, (top + bottom) / 2.f),
cv::Size2f(right - left, bottom - top), rotation / M_PI * 180.f);
}
void cv_line2(cv::Mat& img, const cv::Point& start, const cv::Point& end,
const cv::Scalar& color1, const cv::Scalar& color2,
int thickness) {
cv::LineIterator iter(img, start, end, /*cv::LINE_4=*/4);
for (int i = 0; i < iter.count; i++, iter++) {
const double alpha = static_cast<double>(i) / iter.count;
const cv::Scalar new_color(color1 * (1.0 - alpha) + color2 * alpha);
const cv::Rect rect(iter.pos(), cv::Size(thickness, thickness));
cv::rectangle(img, rect, new_color, /*cv::FILLED=*/-1, /*cv::LINE_4=*/4);
}
}
} // namespace
void AnnotationRenderer::RenderDataOnImage(const RenderData& render_data) {
for (const auto& annotation : render_data.render_annotations()) {
if (annotation.data_case() == RenderAnnotation::kRectangle) {
DrawRectangle(annotation);
} else if (annotation.data_case() == RenderAnnotation::kRoundedRectangle) {
DrawRoundedRectangle(annotation);
} else if (annotation.data_case() == RenderAnnotation::kFilledRectangle) {
DrawFilledRectangle(annotation);
} else if (annotation.data_case() ==
RenderAnnotation::kFilledRoundedRectangle) {
DrawFilledRoundedRectangle(annotation);
} else if (annotation.data_case() == RenderAnnotation::kOval) {
DrawOval(annotation);
} else if (annotation.data_case() == RenderAnnotation::kFilledOval) {
DrawFilledOval(annotation);
} else if (annotation.data_case() == RenderAnnotation::kText) {
DrawText(annotation);
} else if (annotation.data_case() == RenderAnnotation::kPoint) {
DrawPoint(annotation);
} else if (annotation.data_case() == RenderAnnotation::kLine) {
DrawLine(annotation);
} else if (annotation.data_case() == RenderAnnotation::kGradientLine) {
DrawGradientLine(annotation);
} else if (annotation.data_case() == RenderAnnotation::kArrow) {
DrawArrow(annotation);
} else if (annotation.data_case() == RenderAnnotation::kScribble) {
DrawScribble(annotation);
} else {
ABSL_LOG(FATAL) << "Unknown annotation type: " << annotation.data_case();
}
}
}
void AnnotationRenderer::AdoptImage(cv::Mat* input_image) {
image_width_ = input_image->cols;
image_height_ = input_image->rows;
// No pixel data copy here, only headers are copied.
mat_image_ = *input_image;
}
int AnnotationRenderer::GetImageWidth() const { return mat_image_.cols; }
int AnnotationRenderer::GetImageHeight() const { return mat_image_.rows; }
void AnnotationRenderer::SetFlipTextVertically(bool flip) {
flip_text_vertically_ = flip;
}
void AnnotationRenderer::SetScaleFactor(float scale_factor) {
if (scale_factor > 0.0f) scale_factor_ = std::min(scale_factor, 1.0f);
}
void AnnotationRenderer::DrawRectangle(const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& rectangle = annotation.rectangle();
if (rectangle.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(rectangle.left(), rectangle.top(),
image_width_, image_height_, &left,
&top));
ABSL_CHECK(NormalizedtoPixelCoordinates(rectangle.right(),
rectangle.bottom(), image_width_,
image_height_, &right, &bottom));
} else {
left = static_cast<int>(rectangle.left() * scale_factor_);
top = static_cast<int>(rectangle.top() * scale_factor_);
right = static_cast<int>(rectangle.right() * scale_factor_);
bottom = static_cast<int>(rectangle.bottom() * scale_factor_);
}
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
if (rectangle.rotation() != 0.0) {
const auto& rect = RectangleToOpenCVRotatedRect(left, top, right, bottom,
rectangle.rotation());
const int kNumVertices = 4;
cv::Point2f vertices[kNumVertices];
rect.points(vertices);
for (int i = 0; i < kNumVertices; i++) {
cv::line(mat_image_, vertices[i], vertices[(i + 1) % kNumVertices], color,
thickness);
}
} else {
cv::Rect rect(left, top, right - left, bottom - top);
cv::rectangle(mat_image_, rect, color, thickness);
}
if (rectangle.has_top_left_thickness()) {
const auto& rect = RectangleToOpenCVRotatedRect(left, top, right, bottom,
rectangle.rotation());
const int kNumVertices = 4;
cv::Point2f vertices[kNumVertices];
rect.points(vertices);
const int top_left_thickness =
ClampThickness(round(rectangle.top_left_thickness() * scale_factor_));
cv::ellipse(mat_image_, vertices[1],
cv::Size(top_left_thickness, top_left_thickness), 0.0, 0, 360,
color, -1);
}
}
void AnnotationRenderer::DrawFilledRectangle(
const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& rectangle = annotation.filled_rectangle().rectangle();
if (rectangle.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(rectangle.left(), rectangle.top(),
image_width_, image_height_, &left,
&top));
ABSL_CHECK(NormalizedtoPixelCoordinates(rectangle.right(),
rectangle.bottom(), image_width_,
image_height_, &right, &bottom));
} else {
left = static_cast<int>(rectangle.left() * scale_factor_);
top = static_cast<int>(rectangle.top() * scale_factor_);
right = static_cast<int>(rectangle.right() * scale_factor_);
bottom = static_cast<int>(rectangle.bottom() * scale_factor_);
}
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
if (rectangle.rotation() != 0.0) {
const auto& rect = RectangleToOpenCVRotatedRect(left, top, right, bottom,
rectangle.rotation());
const int kNumVertices = 4;
cv::Point2f vertices2f[kNumVertices];
rect.points(vertices2f);
// Convert cv::Point2f[] to cv::Point[].
cv::Point vertices[kNumVertices];
for (int i = 0; i < kNumVertices; ++i) {
vertices[i] = vertices2f[i];
}
cv::fillConvexPoly(mat_image_, vertices, kNumVertices, color);
} else {
cv::Rect rect(left, top, right - left, bottom - top);
cv::rectangle(mat_image_, rect, color, -1);
}
}
void AnnotationRenderer::DrawRoundedRectangle(
const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& rectangle = annotation.rounded_rectangle().rectangle();
if (rectangle.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(rectangle.left(), rectangle.top(),
image_width_, image_height_, &left,
&top));
ABSL_CHECK(NormalizedtoPixelCoordinates(rectangle.right(),
rectangle.bottom(), image_width_,
image_height_, &right, &bottom));
} else {
left = static_cast<int>(rectangle.left() * scale_factor_);
top = static_cast<int>(rectangle.top() * scale_factor_);
right = static_cast<int>(rectangle.right() * scale_factor_);
bottom = static_cast<int>(rectangle.bottom() * scale_factor_);
}
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
const int corner_radius =
round(annotation.rounded_rectangle().corner_radius() * scale_factor_);
const int line_type = annotation.rounded_rectangle().line_type();
DrawRoundedRectangle(mat_image_, cv::Point(left, top),
cv::Point(right, bottom), color, thickness, line_type,
corner_radius);
}
void AnnotationRenderer::DrawFilledRoundedRectangle(
const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& rectangle =
annotation.filled_rounded_rectangle().rounded_rectangle().rectangle();
if (rectangle.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(rectangle.left(), rectangle.top(),
image_width_, image_height_, &left,
&top));
ABSL_CHECK(NormalizedtoPixelCoordinates(rectangle.right(),
rectangle.bottom(), image_width_,
image_height_, &right, &bottom));
} else {
left = static_cast<int>(rectangle.left() * scale_factor_);
top = static_cast<int>(rectangle.top() * scale_factor_);
right = static_cast<int>(rectangle.right() * scale_factor_);
bottom = static_cast<int>(rectangle.bottom() * scale_factor_);
}
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int corner_radius =
annotation.rounded_rectangle().corner_radius() * scale_factor_;
const int line_type = annotation.rounded_rectangle().line_type();
DrawRoundedRectangle(mat_image_, cv::Point(left, top),
cv::Point(right, bottom), color, -1, line_type,
corner_radius);
}
void AnnotationRenderer::DrawRoundedRectangle(cv::Mat src, cv::Point top_left,
cv::Point bottom_right,
const cv::Scalar& line_color,
int thickness, int line_type,
int corner_radius) {
// Corners:
// p1 - p2
// | |
// p4 - p3
cv::Point p1 = top_left;
cv::Point p2 = cv::Point(bottom_right.x, top_left.y);
cv::Point p3 = bottom_right;
cv::Point p4 = cv::Point(top_left.x, bottom_right.y);
// Draw edges of the rectangle
cv::line(src, cv::Point(p1.x + corner_radius, p1.y),
cv::Point(p2.x - corner_radius, p2.y), line_color, thickness,
line_type);
cv::line(src, cv::Point(p2.x, p2.y + corner_radius),
cv::Point(p3.x, p3.y - corner_radius), line_color, thickness,
line_type);
cv::line(src, cv::Point(p4.x + corner_radius, p4.y),
cv::Point(p3.x - corner_radius, p3.y), line_color, thickness,
line_type);
cv::line(src, cv::Point(p1.x, p1.y + corner_radius),
cv::Point(p4.x, p4.y - corner_radius), line_color, thickness,
line_type);
// Draw arcs at corners.
cv::ellipse(src, p1 + cv::Point(corner_radius, corner_radius),
cv::Size(corner_radius, corner_radius), 180.0, 0, 90, line_color,
thickness, line_type);
cv::ellipse(src, p2 + cv::Point(-corner_radius, corner_radius),
cv::Size(corner_radius, corner_radius), 270.0, 0, 90, line_color,
thickness, line_type);
cv::ellipse(src, p3 + cv::Point(-corner_radius, -corner_radius),
cv::Size(corner_radius, corner_radius), 0.0, 0, 90, line_color,
thickness, line_type);
cv::ellipse(src, p4 + cv::Point(corner_radius, -corner_radius),
cv::Size(corner_radius, corner_radius), 90.0, 0, 90, line_color,
thickness, line_type);
}
void AnnotationRenderer::DrawOval(const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& enclosing_rectangle = annotation.oval().rectangle();
if (enclosing_rectangle.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(
enclosing_rectangle.left(), enclosing_rectangle.top(), image_width_,
image_height_, &left, &top));
ABSL_CHECK(NormalizedtoPixelCoordinates(
enclosing_rectangle.right(), enclosing_rectangle.bottom(), image_width_,
image_height_, &right, &bottom));
} else {
left = static_cast<int>(enclosing_rectangle.left() * scale_factor_);
top = static_cast<int>(enclosing_rectangle.top() * scale_factor_);
right = static_cast<int>(enclosing_rectangle.right() * scale_factor_);
bottom = static_cast<int>(enclosing_rectangle.bottom() * scale_factor_);
}
cv::Point center((left + right) / 2, (top + bottom) / 2);
cv::Size size((right - left) / 2, (bottom - top) / 2);
const double rotation = enclosing_rectangle.rotation() / M_PI * 180.f;
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
cv::ellipse(mat_image_, center, size, rotation, 0, 360, color, thickness);
}
void AnnotationRenderer::DrawFilledOval(const RenderAnnotation& annotation) {
int left = -1;
int top = -1;
int right = -1;
int bottom = -1;
const auto& enclosing_rectangle = annotation.filled_oval().oval().rectangle();
if (enclosing_rectangle.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(
enclosing_rectangle.left(), enclosing_rectangle.top(), image_width_,
image_height_, &left, &top));
ABSL_CHECK(NormalizedtoPixelCoordinates(
enclosing_rectangle.right(), enclosing_rectangle.bottom(), image_width_,
image_height_, &right, &bottom));
} else {
left = static_cast<int>(enclosing_rectangle.left() * scale_factor_);
top = static_cast<int>(enclosing_rectangle.top() * scale_factor_);
right = static_cast<int>(enclosing_rectangle.right() * scale_factor_);
bottom = static_cast<int>(enclosing_rectangle.bottom() * scale_factor_);
}
cv::Point center((left + right) / 2, (top + bottom) / 2);
cv::Size size(std::max(0, (right - left) / 2),
std::max(0, (bottom - top) / 2));
const double rotation = enclosing_rectangle.rotation() / M_PI * 180.f;
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
cv::ellipse(mat_image_, center, size, rotation, 0, 360, color, -1);
}
void AnnotationRenderer::DrawArrow(const RenderAnnotation& annotation) {
int x_start = -1;
int y_start = -1;
int x_end = -1;
int y_end = -1;
const auto& arrow = annotation.arrow();
if (arrow.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(arrow.x_start(), arrow.y_start(),
image_width_, image_height_,
&x_start, &y_start));
ABSL_CHECK(NormalizedtoPixelCoordinates(arrow.x_end(), arrow.y_end(),
image_width_, image_height_, &x_end,
&y_end));
} else {
x_start = static_cast<int>(arrow.x_start() * scale_factor_);
y_start = static_cast<int>(arrow.y_start() * scale_factor_);
x_end = static_cast<int>(arrow.x_end() * scale_factor_);
y_end = static_cast<int>(arrow.y_end() * scale_factor_);
}
cv::Point arrow_start(x_start, y_start);
cv::Point arrow_end(x_end, y_end);
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
// Draw the main arrow line.
cv::line(mat_image_, arrow_start, arrow_end, color, thickness);
// Compute the arrowtip left and right vectors.
Vector2_d L_start(static_cast<double>(x_start), static_cast<double>(y_start));
Vector2_d L_end(static_cast<double>(x_end), static_cast<double>(y_end));
Vector2_d U = (L_end - L_start).Normalize();
Vector2_d V = U.Ortho();
double line_length = (L_end - L_start).Norm();
constexpr double kArrowTipLengthProportion = 0.2;
double arrowtip_length = kArrowTipLengthProportion * line_length;
Vector2_d arrowtip_left = L_end - arrowtip_length * U + arrowtip_length * V;
Vector2_d arrowtip_right = L_end - arrowtip_length * U - arrowtip_length * V;
// Draw the arrowtip left and right lines.
cv::Point arrowtip_left_start(static_cast<int>(round(arrowtip_left[0])),
static_cast<int>(round(arrowtip_left[1])));
cv::Point arrowtip_right_start(static_cast<int>(round(arrowtip_right[0])),
static_cast<int>(round(arrowtip_right[1])));
cv::line(mat_image_, arrowtip_left_start, arrow_end, color, thickness);
cv::line(mat_image_, arrowtip_right_start, arrow_end, color, thickness);
}
void AnnotationRenderer::DrawPoint(const RenderAnnotation& annotation) {
DrawPoint(annotation.point(), annotation);
}
void AnnotationRenderer::DrawPoint(const RenderAnnotation::Point& point,
const RenderAnnotation& annotation) {
int x = -1;
int y = -1;
if (point.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(point.x(), point.y(), image_width_,
image_height_, &x, &y));
} else {
x = static_cast<int>(point.x() * scale_factor_);
y = static_cast<int>(point.y() * scale_factor_);
}
cv::Point point_to_draw(x, y);
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
cv::circle(mat_image_, point_to_draw, thickness, color, -1);
}
void AnnotationRenderer::DrawScribble(const RenderAnnotation& annotation) {
for (const RenderAnnotation::Point& point : annotation.scribble().point()) {
DrawPoint(point, annotation);
}
}
void AnnotationRenderer::DrawLine(const RenderAnnotation& annotation) {
int x_start = -1;
int y_start = -1;
int x_end = -1;
int y_end = -1;
const auto& line = annotation.line();
if (line.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(line.x_start(), line.y_start(),
image_width_, image_height_,
&x_start, &y_start));
ABSL_CHECK(NormalizedtoPixelCoordinates(line.x_end(), line.y_end(),
image_width_, image_height_, &x_end,
&y_end));
} else {
x_start = static_cast<int>(line.x_start() * scale_factor_);
y_start = static_cast<int>(line.y_start() * scale_factor_);
x_end = static_cast<int>(line.x_end() * scale_factor_);
y_end = static_cast<int>(line.y_end() * scale_factor_);
}
cv::Point start(x_start, y_start);
cv::Point end(x_end, y_end);
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
cv::line(mat_image_, start, end, color, thickness);
}
void AnnotationRenderer::DrawGradientLine(const RenderAnnotation& annotation) {
int x_start = -1;
int y_start = -1;
int x_end = -1;
int y_end = -1;
const auto& line = annotation.gradient_line();
if (line.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(line.x_start(), line.y_start(),
image_width_, image_height_,
&x_start, &y_start));
ABSL_CHECK(NormalizedtoPixelCoordinates(line.x_end(), line.y_end(),
image_width_, image_height_, &x_end,
&y_end));
} else {
x_start = static_cast<int>(line.x_start() * scale_factor_);
y_start = static_cast<int>(line.y_start() * scale_factor_);
x_end = static_cast<int>(line.x_end() * scale_factor_);
y_end = static_cast<int>(line.y_end() * scale_factor_);
}
const cv::Point start(x_start, y_start);
const cv::Point end(x_end, y_end);
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
const cv::Scalar color1 = MediapipeColorToOpenCVColor(line.color1());
const cv::Scalar color2 = MediapipeColorToOpenCVColor(line.color2());
cv_line2(mat_image_, start, end, color1, color2, thickness);
}
void AnnotationRenderer::DrawText(const RenderAnnotation& annotation) {
int left = -1;
int baseline = -1;
int font_size = -1;
const auto& text = annotation.text();
if (text.normalized()) {
ABSL_CHECK(NormalizedtoPixelCoordinates(text.left(), text.baseline(),
image_width_, image_height_, &left,
&baseline));
font_size = static_cast<int>(round(text.font_height() * image_height_));
} else {
left = static_cast<int>(text.left() * scale_factor_);
baseline = static_cast<int>(text.baseline() * scale_factor_);
font_size = static_cast<int>(text.font_height() * scale_factor_);
}
cv::Point origin(left, baseline);
const cv::Scalar color = MediapipeColorToOpenCVColor(annotation.color());
const int thickness =
ClampThickness(round(annotation.thickness() * scale_factor_));
const int font_face = text.font_face();
const double font_scale = ComputeFontScale(font_face, font_size, thickness);
int text_baseline = 0;
cv::Size text_size = cv::getTextSize(text.display_text(), font_face,
font_scale, thickness, &text_baseline);
if (text.center_horizontally()) {
origin.x -= text_size.width / 2;
}
if (text.center_vertically()) {
origin.y += text_size.height / 2;
}
if (text.outline_thickness() > 0.0) {
const int background_thickness = ClampThickness(
round((annotation.thickness() + 2.0 * text.outline_thickness()) *
scale_factor_));
const cv::Scalar outline_color =
MediapipeColorToOpenCVColor(text.outline_color());
cv::putText(mat_image_, text.display_text(), origin, font_face, font_scale,
outline_color, background_thickness, /*lineType=*/8,
/*bottomLeftOrigin=*/flip_text_vertically_);
}
cv::putText(mat_image_, text.display_text(), origin, font_face, font_scale,
color, thickness, /*lineType=*/8,
/*bottomLeftOrigin=*/flip_text_vertically_);
}
double AnnotationRenderer::ComputeFontScale(int font_face, int font_size,
int thickness) {
double base_line;
double cap_line;
// The details below of how to compute the font scale from font face,
// thickness, and size were inferred from the OpenCV implementation.
switch (font_face) {
case cv::FONT_HERSHEY_SIMPLEX:
case cv::FONT_HERSHEY_DUPLEX:
case cv::FONT_HERSHEY_COMPLEX:
case cv::FONT_HERSHEY_TRIPLEX:
case cv::FONT_HERSHEY_SCRIPT_SIMPLEX:
case cv::FONT_HERSHEY_SCRIPT_COMPLEX:
base_line = 9;
cap_line = 12;
break;
case cv::FONT_HERSHEY_PLAIN:
base_line = 5;
cap_line = 4;
break;
case cv::FONT_HERSHEY_COMPLEX_SMALL:
base_line = 6;
cap_line = 7;
break;
default:
return -1;
}
const double thick = static_cast<double>(thickness + 1);
return (static_cast<double>(font_size) - (thick / 2.0F)) /
(cap_line + base_line);
}
} // namespace mediapipe