// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/util/tflite/operations/max_unpooling.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/padding.h"
namespace mediapipe {
namespace tflite_operations {
namespace {
constexpr int kDataInputTensor = 0;
constexpr int kIndicesTensor = 1;
constexpr int kOutputTensor = 0;
inline void MaxUnpooling(const ::tflite::PoolParams& params,
const ::tflite::RuntimeShape& input_shape,
const float* input_data, const float* indices_data,
const ::tflite::RuntimeShape& output_shape,
float* output_data) {
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
std::memset(output_data, 0, output_shape.FlatSize() * sizeof(float));
for (int batch = 0; batch < batches; ++batch) {
for (int in_y = 0; in_y < input_height; ++in_y) {
for (int in_x = 0; in_x < input_width; ++in_x) {
for (int channel = 0; channel < depth; ++channel) {
const auto input_offset =
Offset(input_shape, batch, in_y, in_x, channel);
int idx = indices_data[input_offset];
const int max_x = idx % params.filter_width;
const int max_y = idx / params.filter_width;
const int out_x =
in_x * stride_width - params.padding_values.width + max_x;
const int out_y =
in_y * stride_height - params.padding_values.height + max_y;
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
input_data[input_offset];
}
}
}
}
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
auto* params =
reinterpret_cast<const TfLitePoolParams*>(node->custom_initial_data);
TfLitePaddingValues* data_padding =
reinterpret_cast<TfLitePaddingValues*>(node->user_data);
TF_LITE_ENSURE_EQ(context, ::tflite::NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, ::tflite::NumOutputs(node), 1);
TfLiteTensor* output = ::tflite::GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
const TfLiteTensor* input =
::tflite::GetInput(context, node, kDataInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* indices =
::tflite::GetInput(context, node, kIndicesTensor);
TF_LITE_ENSURE(context, indices != nullptr);
TF_LITE_ENSURE_EQ(context, ::tflite::NumDimensions(indices), 4);
TF_LITE_ENSURE_EQ(context, ::tflite::NumDimensions(input), 4);
TF_LITE_ENSURE_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_EQ(context, output->type, kTfLiteFloat32);
TF_LITE_ENSURE_EQ(context, indices->type, kTfLiteFloat32);
int batches = input->dims->data[0];
int height = input->dims->data[1];
int width = input->dims->data[2];
int channels_out = input->dims->data[3];
int out_width = width * params->filter_width;
int out_height = height * params->filter_height;
data_padding->height = ::tflite::ComputePadding(
params->stride_height, 1, out_height, params->filter_height, height);
data_padding->width = ::tflite::ComputePadding(
params->stride_width, 1, out_width, params->filter_width, width);
TfLiteIntArray* output_size = TfLiteIntArrayCreate(4);
output_size->data[0] = batches;
output_size->data[1] = out_height;
output_size->data[2] = out_width;
output_size->data[3] = channels_out;
return context->ResizeTensor(context, output, output_size);
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params =
reinterpret_cast<const TfLitePoolParams*>(node->custom_initial_data);
TfLitePaddingValues* data_padding =
reinterpret_cast<TfLitePaddingValues*>(node->user_data);
TfLiteTensor* output = ::tflite::GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
const TfLiteTensor* input =
::tflite::GetInput(context, node, kDataInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* indices =
::tflite::GetInput(context, node, kIndicesTensor);
TF_LITE_ENSURE(context, indices != nullptr);
float activation_min, activation_max;
::tflite::CalculateActivationRange(params->activation, &activation_min,
&activation_max);
::tflite::PoolParams op_params;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.filter_height = params->filter_height;
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data_padding->height;
op_params.padding_values.width = data_padding->width;
op_params.float_activation_min = activation_min;
op_params.float_activation_max = activation_max;
MaxUnpooling(op_params, ::tflite::GetTensorShape(input),
::tflite::GetTensorData<float>(input),
::tflite::GetTensorData<float>(indices),
::tflite::GetTensorShape(output),
::tflite::GetTensorData<float>(output));
return kTfLiteOk;
}
} // namespace
TfLiteRegistration* RegisterMaxUnpooling2D() {
static TfLiteRegistration reg = {
[](TfLiteContext*, const char*, size_t) -> void* {
return new TfLitePaddingValues();
},
[](TfLiteContext*, void* buffer) -> void {
delete reinterpret_cast<TfLitePaddingValues*>(buffer);
},
Prepare, Eval};
return ®
}
} // namespace tflite_operations
} // namespace mediapipe