use core::{
cmp,
fmt::Debug,
panic::{RefUnwindSafe, UnwindSafe},
u8,
};
use alloc::{sync::Arc, vec, vec::Vec};
use crate::{
packed,
util::{
alphabet::ByteSet,
search::{Match, MatchKind, Span},
},
};
/// A prefilter for accelerating a search.
///
/// This crate uses prefilters in the core search implementations to accelerate
/// common cases. They typically only apply to cases where there are a small
/// number of patterns (less than 100 or so), but when they do, thoughput can
/// be boosted considerably, perhaps by an order of magnitude. When a prefilter
/// is active, it is used whenever a search enters an automaton's start state.
///
/// Currently, prefilters cannot be constructed by
/// callers. A `Prefilter` can only be accessed via the
/// [`Automaton::prefilter`](crate::automaton::Automaton::prefilter)
/// method and used to execute a search. In other words, a prefilter can be
/// used to optimize your own search implementation if necessary, but cannot do
/// much else. If you have a use case for more APIs, please submit an issue.
#[derive(Clone, Debug)]
pub struct Prefilter {
finder: Arc<dyn PrefilterI>,
memory_usage: usize,
}
impl Prefilter {
/// Execute a search in the haystack within the span given. If a match or
/// a possible match is returned, then it is guaranteed to occur within
/// the bounds of the span.
///
/// If the span provided is invalid for the given haystack, then behavior
/// is unspecified.
#[inline]
pub fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
self.finder.find_in(haystack, span)
}
#[inline]
pub(crate) fn memory_usage(&self) -> usize {
self.memory_usage
}
}
/// A candidate is the result of running a prefilter on a haystack at a
/// particular position.
///
/// The result is either no match, a confirmed match or a possible match.
///
/// When no match is returned, the prefilter is guaranteeing that no possible
/// match can be found in the haystack, and the caller may trust this. That is,
/// all correct prefilters must never report false negatives.
///
/// In some cases, a prefilter can confirm a match very quickly, in which case,
/// the caller may use this to stop what it's doing and report the match. In
/// this case, prefilter implementations must never report a false positive.
/// In other cases, the prefilter can only report a potential match, in which
/// case the callers must attempt to confirm the match. In this case, prefilter
/// implementations are permitted to return false positives.
#[derive(Clone, Debug)]
pub enum Candidate {
/// No match was found. Since false negatives are not possible, this means
/// the search can quit as it is guaranteed not to find another match.
None,
/// A confirmed match was found. Callers do not need to confirm it.
Match(Match),
/// The start of a possible match was found. Callers must confirm it before
/// reporting it as a match.
PossibleStartOfMatch(usize),
}
impl Candidate {
/// Convert this candidate into an option. This is useful when callers
/// do not distinguish between true positives and false positives (i.e.,
/// the caller must always confirm the match).
pub fn into_option(self) -> Option<usize> {
match self {
Candidate::None => None,
Candidate::Match(ref m) => Some(m.start()),
Candidate::PossibleStartOfMatch(start) => Some(start),
}
}
}
/// A prefilter describes the behavior of fast literal scanners for quickly
/// skipping past bytes in the haystack that we know cannot possibly
/// participate in a match.
trait PrefilterI:
Send + Sync + RefUnwindSafe + UnwindSafe + Debug + 'static
{
/// Returns the next possible match candidate. This may yield false
/// positives, so callers must confirm a match starting at the position
/// returned. This, however, must never produce false negatives. That is,
/// this must, at minimum, return the starting position of the next match
/// in the given haystack after or at the given position.
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate;
}
impl<P: PrefilterI + ?Sized> PrefilterI for Arc<P> {
#[inline(always)]
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
(**self).find_in(haystack, span)
}
}
/// A builder for constructing the best possible prefilter. When constructed,
/// this builder will heuristically select the best prefilter it can build,
/// if any, and discard the rest.
#[derive(Debug)]
pub(crate) struct Builder {
count: usize,
ascii_case_insensitive: bool,
start_bytes: StartBytesBuilder,
rare_bytes: RareBytesBuilder,
memmem: MemmemBuilder,
packed: Option<packed::Builder>,
// If we run across a condition that suggests we shouldn't use a prefilter
// at all (like an empty pattern), then disable prefilters entirely.
enabled: bool,
}
impl Builder {
/// Create a new builder for constructing the best possible prefilter.
pub(crate) fn new(kind: MatchKind) -> Builder {
let pbuilder = kind
.as_packed()
.map(|kind| packed::Config::new().match_kind(kind).builder());
Builder {
count: 0,
ascii_case_insensitive: false,
start_bytes: StartBytesBuilder::new(),
rare_bytes: RareBytesBuilder::new(),
memmem: MemmemBuilder::default(),
packed: pbuilder,
enabled: true,
}
}
/// Enable ASCII case insensitivity. When set, byte strings added to this
/// builder will be interpreted without respect to ASCII case.
pub(crate) fn ascii_case_insensitive(mut self, yes: bool) -> Builder {
self.ascii_case_insensitive = yes;
self.start_bytes = self.start_bytes.ascii_case_insensitive(yes);
self.rare_bytes = self.rare_bytes.ascii_case_insensitive(yes);
self
}
/// Return a prefilter suitable for quickly finding potential matches.
///
/// All patterns added to an Aho-Corasick automaton should be added to this
/// builder before attempting to construct the prefilter.
pub(crate) fn build(&self) -> Option<Prefilter> {
if !self.enabled {
debug!("prefilter not enabled, skipping");
return None;
}
// If we only have one pattern, then deferring to memmem is always
// the best choice. This is kind of a weird case, because, well, why
// use Aho-Corasick if you only have one pattern? But maybe you don't
// know exactly how many patterns you'll get up front, and you need to
// support the option of multiple patterns. So instead of relying on
// the caller to branch and use memmem explicitly, we just do it for
// them.
if !self.ascii_case_insensitive {
if let Some(pre) = self.memmem.build() {
debug!("using memmem prefilter");
return Some(pre);
}
}
let (packed, patlen, minlen) = if self.ascii_case_insensitive {
(None, usize::MAX, 0)
} else {
let patlen = self.packed.as_ref().map_or(usize::MAX, |p| p.len());
let minlen = self.packed.as_ref().map_or(0, |p| p.minimum_len());
let packed =
self.packed.as_ref().and_then(|b| b.build()).map(|s| {
let memory_usage = s.memory_usage();
debug!(
"built packed prefilter (len: {}, \
minimum pattern len: {}, memory usage: {}) \
for consideration",
patlen, minlen, memory_usage,
);
Prefilter { finder: Arc::new(Packed(s)), memory_usage }
});
(packed, patlen, minlen)
};
match (self.start_bytes.build(), self.rare_bytes.build()) {
// If we could build both start and rare prefilters, then there are
// a few cases in which we'd want to use the start-byte prefilter
// over the rare-byte prefilter, since the former has lower
// overhead.
(prestart @ Some(_), prerare @ Some(_)) => {
debug!(
"both start (len={}, rank={}) and \
rare (len={}, rank={}) byte prefilters \
are available",
self.start_bytes.count,
self.start_bytes.rank_sum,
self.rare_bytes.count,
self.rare_bytes.rank_sum,
);
if patlen <= 16
&& minlen >= 2
&& self.start_bytes.count >= 3
&& self.rare_bytes.count >= 3
{
debug!(
"start and rare byte prefilters available, but \
they're probably slower than packed so using \
packed"
);
return packed;
}
// If the start-byte prefilter can scan for a smaller number
// of bytes than the rare-byte prefilter, then it's probably
// faster.
let has_fewer_bytes =
self.start_bytes.count < self.rare_bytes.count;
// Otherwise, if the combined frequency rank of the detected
// bytes in the start-byte prefilter is "close" to the combined
// frequency rank of the rare-byte prefilter, then we pick
// the start-byte prefilter even if the rare-byte prefilter
// heuristically searches for rare bytes. This is because the
// rare-byte prefilter has higher constant costs, so we tend to
// prefer the start-byte prefilter when we can.
let has_rarer_bytes =
self.start_bytes.rank_sum <= self.rare_bytes.rank_sum + 50;
if has_fewer_bytes {
debug!(
"using start byte prefilter because it has fewer
bytes to search for than the rare byte prefilter",
);
prestart
} else if has_rarer_bytes {
debug!(
"using start byte prefilter because its byte \
frequency rank was determined to be \
\"good enough\" relative to the rare byte prefilter \
byte frequency rank",
);
prestart
} else {
debug!("using rare byte prefilter");
prerare
}
}
(prestart @ Some(_), None) => {
if patlen <= 16 && minlen >= 2 && self.start_bytes.count >= 3 {
debug!(
"start byte prefilter available, but \
it's probably slower than packed so using \
packed"
);
return packed;
}
debug!(
"have start byte prefilter but not rare byte prefilter, \
so using start byte prefilter",
);
prestart
}
(None, prerare @ Some(_)) => {
if patlen <= 16 && minlen >= 2 && self.rare_bytes.count >= 3 {
debug!(
"rare byte prefilter available, but \
it's probably slower than packed so using \
packed"
);
return packed;
}
debug!(
"have rare byte prefilter but not start byte prefilter, \
so using rare byte prefilter",
);
prerare
}
(None, None) if self.ascii_case_insensitive => {
debug!(
"no start or rare byte prefilter and ASCII case \
insensitivity was enabled, so skipping prefilter",
);
None
}
(None, None) => {
if packed.is_some() {
debug!("falling back to packed prefilter");
} else {
debug!("no prefilter available");
}
packed
}
}
}
/// Add a literal string to this prefilter builder.
pub(crate) fn add(&mut self, bytes: &[u8]) {
if bytes.is_empty() {
self.enabled = false;
}
if !self.enabled {
return;
}
self.count += 1;
self.start_bytes.add(bytes);
self.rare_bytes.add(bytes);
self.memmem.add(bytes);
if let Some(ref mut pbuilder) = self.packed {
pbuilder.add(bytes);
}
}
}
/// A type that wraps a packed searcher and implements the `Prefilter`
/// interface.
#[derive(Clone, Debug)]
struct Packed(packed::Searcher);
impl PrefilterI for Packed {
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
self.0
.find_in(&haystack, span)
.map_or(Candidate::None, Candidate::Match)
}
}
/// A builder for constructing a prefilter that uses memmem.
#[derive(Debug, Default)]
struct MemmemBuilder {
/// The number of patterns that have been added.
count: usize,
/// The singular pattern to search for. This is only set when count==1.
one: Option<Vec<u8>>,
}
impl MemmemBuilder {
fn build(&self) -> Option<Prefilter> {
#[cfg(all(feature = "std", feature = "perf-literal"))]
fn imp(builder: &MemmemBuilder) -> Option<Prefilter> {
let pattern = builder.one.as_ref()?;
assert_eq!(1, builder.count);
let finder = Arc::new(Memmem(
memchr::memmem::Finder::new(pattern).into_owned(),
));
let memory_usage = pattern.len();
Some(Prefilter { finder, memory_usage })
}
#[cfg(not(all(feature = "std", feature = "perf-literal")))]
fn imp(_: &MemmemBuilder) -> Option<Prefilter> {
None
}
imp(self)
}
fn add(&mut self, bytes: &[u8]) {
self.count += 1;
if self.count == 1 {
self.one = Some(bytes.to_vec());
} else {
self.one = None;
}
}
}
/// A type that wraps a SIMD accelerated single substring search from the
/// `memchr` crate for use as a prefilter.
///
/// Currently, this prefilter is only active for Aho-Corasick searchers with
/// a single pattern. In theory, this could be extended to support searchers
/// that have a common prefix of more than one byte (for one byte, we would use
/// memchr), but it's not clear if it's worth it or not.
///
/// Also, unfortunately, this currently also requires the 'std' feature to
/// be enabled. That's because memchr doesn't have a no-std-but-with-alloc
/// mode, and so APIs like Finder::into_owned aren't available when 'std' is
/// disabled. But there should be an 'alloc' feature that brings in APIs like
/// Finder::into_owned but doesn't use std-only features like runtime CPU
/// feature detection.
#[cfg(all(feature = "std", feature = "perf-literal"))]
#[derive(Clone, Debug)]
struct Memmem(memchr::memmem::Finder<'static>);
#[cfg(all(feature = "std", feature = "perf-literal"))]
impl PrefilterI for Memmem {
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
use crate::util::primitives::PatternID;
self.0.find(&haystack[span]).map_or(Candidate::None, |i| {
let start = span.start + i;
let end = start + self.0.needle().len();
// N.B. We can declare a match and use a fixed pattern ID here
// because a Memmem prefilter is only ever created for searchers
// with exactly one pattern. Thus, every match is always a match
// and it is always for the first and only pattern.
Candidate::Match(Match::new(PatternID::ZERO, start..end))
})
}
}
/// A builder for constructing a rare byte prefilter.
///
/// A rare byte prefilter attempts to pick out a small set of rare bytes that
/// occurr in the patterns, and then quickly scan to matches of those rare
/// bytes.
#[derive(Clone, Debug)]
struct RareBytesBuilder {
/// Whether this prefilter should account for ASCII case insensitivity or
/// not.
ascii_case_insensitive: bool,
/// A set of rare bytes, indexed by byte value.
rare_set: ByteSet,
/// A set of byte offsets associated with bytes in a pattern. An entry
/// corresponds to a particular bytes (its index) and is only non-zero if
/// the byte occurred at an offset greater than 0 in at least one pattern.
///
/// If a byte's offset is not representable in 8 bits, then the rare bytes
/// prefilter becomes inert.
byte_offsets: RareByteOffsets,
/// Whether this is available as a prefilter or not. This can be set to
/// false during construction if a condition is seen that invalidates the
/// use of the rare-byte prefilter.
available: bool,
/// The number of bytes set to an active value in `byte_offsets`.
count: usize,
/// The sum of frequency ranks for the rare bytes detected. This is
/// intended to give a heuristic notion of how rare the bytes are.
rank_sum: u16,
}
/// A set of byte offsets, keyed by byte.
#[derive(Clone, Copy)]
struct RareByteOffsets {
/// Each entry corresponds to the maximum offset of the corresponding
/// byte across all patterns seen.
set: [RareByteOffset; 256],
}
impl RareByteOffsets {
/// Create a new empty set of rare byte offsets.
pub(crate) fn empty() -> RareByteOffsets {
RareByteOffsets { set: [RareByteOffset::default(); 256] }
}
/// Add the given offset for the given byte to this set. If the offset is
/// greater than the existing offset, then it overwrites the previous
/// value and returns false. If there is no previous value set, then this
/// sets it and returns true.
pub(crate) fn set(&mut self, byte: u8, off: RareByteOffset) {
self.set[byte as usize].max =
cmp::max(self.set[byte as usize].max, off.max);
}
}
impl core::fmt::Debug for RareByteOffsets {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let mut offsets = vec![];
for off in self.set.iter() {
if off.max > 0 {
offsets.push(off);
}
}
f.debug_struct("RareByteOffsets").field("set", &offsets).finish()
}
}
/// Offsets associated with an occurrence of a "rare" byte in any of the
/// patterns used to construct a single Aho-Corasick automaton.
#[derive(Clone, Copy, Debug)]
struct RareByteOffset {
/// The maximum offset at which a particular byte occurs from the start
/// of any pattern. This is used as a shift amount. That is, when an
/// occurrence of this byte is found, the candidate position reported by
/// the prefilter is `position_of_byte - max`, such that the automaton
/// will begin its search at a position that is guaranteed to observe a
/// match.
///
/// To avoid accidentally quadratic behavior, a prefilter is considered
/// ineffective when it is asked to start scanning from a position that it
/// has already scanned past.
///
/// Using a `u8` here means that if we ever see a pattern that's longer
/// than 255 bytes, then the entire rare byte prefilter is disabled.
max: u8,
}
impl Default for RareByteOffset {
fn default() -> RareByteOffset {
RareByteOffset { max: 0 }
}
}
impl RareByteOffset {
/// Create a new rare byte offset. If the given offset is too big, then
/// None is returned. In that case, callers should render the rare bytes
/// prefilter inert.
fn new(max: usize) -> Option<RareByteOffset> {
if max > u8::MAX as usize {
None
} else {
Some(RareByteOffset { max: max as u8 })
}
}
}
impl RareBytesBuilder {
/// Create a new builder for constructing a rare byte prefilter.
fn new() -> RareBytesBuilder {
RareBytesBuilder {
ascii_case_insensitive: false,
rare_set: ByteSet::empty(),
byte_offsets: RareByteOffsets::empty(),
available: true,
count: 0,
rank_sum: 0,
}
}
/// Enable ASCII case insensitivity. When set, byte strings added to this
/// builder will be interpreted without respect to ASCII case.
fn ascii_case_insensitive(mut self, yes: bool) -> RareBytesBuilder {
self.ascii_case_insensitive = yes;
self
}
/// Build the rare bytes prefilter.
///
/// If there are more than 3 distinct rare bytes found, or if heuristics
/// otherwise determine that this prefilter should not be used, then `None`
/// is returned.
fn build(&self) -> Option<Prefilter> {
#[cfg(feature = "perf-literal")]
fn imp(builder: &RareBytesBuilder) -> Option<Prefilter> {
if !builder.available || builder.count > 3 {
return None;
}
let (mut bytes, mut len) = ([0; 3], 0);
for b in 0..=255 {
if builder.rare_set.contains(b) {
bytes[len] = b as u8;
len += 1;
}
}
let finder: Arc<dyn PrefilterI> = match len {
0 => return None,
1 => Arc::new(RareBytesOne {
byte1: bytes[0],
offset: builder.byte_offsets.set[bytes[0] as usize],
}),
2 => Arc::new(RareBytesTwo {
offsets: builder.byte_offsets,
byte1: bytes[0],
byte2: bytes[1],
}),
3 => Arc::new(RareBytesThree {
offsets: builder.byte_offsets,
byte1: bytes[0],
byte2: bytes[1],
byte3: bytes[2],
}),
_ => unreachable!(),
};
Some(Prefilter { finder, memory_usage: 0 })
}
#[cfg(not(feature = "perf-literal"))]
fn imp(_: &RareBytesBuilder) -> Option<Prefilter> {
None
}
imp(self)
}
/// Add a byte string to this builder.
///
/// All patterns added to an Aho-Corasick automaton should be added to this
/// builder before attempting to construct the prefilter.
fn add(&mut self, bytes: &[u8]) {
// If we've already given up, then do nothing.
if !self.available {
return;
}
// If we've already blown our budget, then don't waste time looking
// for more rare bytes.
if self.count > 3 {
self.available = false;
return;
}
// If the pattern is too long, then our offset table is bunk, so
// give up.
if bytes.len() >= 256 {
self.available = false;
return;
}
let mut rarest = match bytes.get(0) {
None => return,
Some(&b) => (b, freq_rank(b)),
};
// The idea here is to look for the rarest byte in each pattern, and
// add that to our set. As a special exception, if we see a byte that
// we've already added, then we immediately stop and choose that byte,
// even if there's another rare byte in the pattern. This helps us
// apply the rare byte optimization in more cases by attempting to pick
// bytes that are in common between patterns. So for example, if we
// were searching for `Sherlock` and `lockjaw`, then this would pick
// `k` for both patterns, resulting in the use of `memchr` instead of
// `memchr2` for `k` and `j`.
let mut found = false;
for (pos, &b) in bytes.iter().enumerate() {
self.set_offset(pos, b);
if found {
continue;
}
if self.rare_set.contains(b) {
found = true;
continue;
}
let rank = freq_rank(b);
if rank < rarest.1 {
rarest = (b, rank);
}
}
if !found {
self.add_rare_byte(rarest.0);
}
}
fn set_offset(&mut self, pos: usize, byte: u8) {
// This unwrap is OK because pos is never bigger than our max.
let offset = RareByteOffset::new(pos).unwrap();
self.byte_offsets.set(byte, offset);
if self.ascii_case_insensitive {
self.byte_offsets.set(opposite_ascii_case(byte), offset);
}
}
fn add_rare_byte(&mut self, byte: u8) {
self.add_one_rare_byte(byte);
if self.ascii_case_insensitive {
self.add_one_rare_byte(opposite_ascii_case(byte));
}
}
fn add_one_rare_byte(&mut self, byte: u8) {
if !self.rare_set.contains(byte) {
self.rare_set.add(byte);
self.count += 1;
self.rank_sum += freq_rank(byte) as u16;
}
}
}
/// A prefilter for scanning for a single "rare" byte.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct RareBytesOne {
byte1: u8,
offset: RareByteOffset,
}
#[cfg(feature = "perf-literal")]
impl PrefilterI for RareBytesOne {
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
memchr::memchr(self.byte1, &haystack[span])
.map(|i| {
let pos = span.start + i;
cmp::max(
span.start,
pos.saturating_sub(usize::from(self.offset.max)),
)
})
.map_or(Candidate::None, Candidate::PossibleStartOfMatch)
}
}
/// A prefilter for scanning for two "rare" bytes.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct RareBytesTwo {
offsets: RareByteOffsets,
byte1: u8,
byte2: u8,
}
#[cfg(feature = "perf-literal")]
impl PrefilterI for RareBytesTwo {
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
memchr::memchr2(self.byte1, self.byte2, &haystack[span])
.map(|i| {
let pos = span.start + i;
let offset = self.offsets.set[usize::from(haystack[pos])].max;
cmp::max(span.start, pos.saturating_sub(usize::from(offset)))
})
.map_or(Candidate::None, Candidate::PossibleStartOfMatch)
}
}
/// A prefilter for scanning for three "rare" bytes.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct RareBytesThree {
offsets: RareByteOffsets,
byte1: u8,
byte2: u8,
byte3: u8,
}
#[cfg(feature = "perf-literal")]
impl PrefilterI for RareBytesThree {
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
memchr::memchr3(self.byte1, self.byte2, self.byte3, &haystack[span])
.map(|i| {
let pos = span.start + i;
let offset = self.offsets.set[usize::from(haystack[pos])].max;
cmp::max(span.start, pos.saturating_sub(usize::from(offset)))
})
.map_or(Candidate::None, Candidate::PossibleStartOfMatch)
}
}
/// A builder for constructing a starting byte prefilter.
///
/// A starting byte prefilter is a simplistic prefilter that looks for possible
/// matches by reporting all positions corresponding to a particular byte. This
/// generally only takes affect when there are at most 3 distinct possible
/// starting bytes. e.g., the patterns `foo`, `bar`, and `baz` have two
/// distinct starting bytes (`f` and `b`), and this prefilter returns all
/// occurrences of either `f` or `b`.
///
/// In some cases, a heuristic frequency analysis may determine that it would
/// be better not to use this prefilter even when there are 3 or fewer distinct
/// starting bytes.
#[derive(Clone, Debug)]
struct StartBytesBuilder {
/// Whether this prefilter should account for ASCII case insensitivity or
/// not.
ascii_case_insensitive: bool,
/// The set of starting bytes observed.
byteset: Vec<bool>,
/// The number of bytes set to true in `byteset`.
count: usize,
/// The sum of frequency ranks for the rare bytes detected. This is
/// intended to give a heuristic notion of how rare the bytes are.
rank_sum: u16,
}
impl StartBytesBuilder {
/// Create a new builder for constructing a start byte prefilter.
fn new() -> StartBytesBuilder {
StartBytesBuilder {
ascii_case_insensitive: false,
byteset: vec![false; 256],
count: 0,
rank_sum: 0,
}
}
/// Enable ASCII case insensitivity. When set, byte strings added to this
/// builder will be interpreted without respect to ASCII case.
fn ascii_case_insensitive(mut self, yes: bool) -> StartBytesBuilder {
self.ascii_case_insensitive = yes;
self
}
/// Build the starting bytes prefilter.
///
/// If there are more than 3 distinct starting bytes, or if heuristics
/// otherwise determine that this prefilter should not be used, then `None`
/// is returned.
fn build(&self) -> Option<Prefilter> {
#[cfg(feature = "perf-literal")]
fn imp(builder: &StartBytesBuilder) -> Option<Prefilter> {
if builder.count > 3 {
return None;
}
let (mut bytes, mut len) = ([0; 3], 0);
for b in 0..256 {
if !builder.byteset[b] {
continue;
}
// We don't handle non-ASCII bytes for now. Getting non-ASCII
// bytes right is trickier, since we generally don't want to put
// a leading UTF-8 code unit into a prefilter that isn't ASCII,
// since they can frequently. Instead, it would be better to use a
// continuation byte, but this requires more sophisticated analysis
// of the automaton and a richer prefilter API.
if b > 0x7F {
return None;
}
bytes[len] = b as u8;
len += 1;
}
let finder: Arc<dyn PrefilterI> = match len {
0 => return None,
1 => Arc::new(StartBytesOne { byte1: bytes[0] }),
2 => Arc::new(StartBytesTwo {
byte1: bytes[0],
byte2: bytes[1],
}),
3 => Arc::new(StartBytesThree {
byte1: bytes[0],
byte2: bytes[1],
byte3: bytes[2],
}),
_ => unreachable!(),
};
Some(Prefilter { finder, memory_usage: 0 })
}
#[cfg(not(feature = "perf-literal"))]
fn imp(_: &StartBytesBuilder) -> Option<Prefilter> {
None
}
imp(self)
}
/// Add a byte string to this builder.
///
/// All patterns added to an Aho-Corasick automaton should be added to this
/// builder before attempting to construct the prefilter.
fn add(&mut self, bytes: &[u8]) {
if self.count > 3 {
return;
}
if let Some(&byte) = bytes.get(0) {
self.add_one_byte(byte);
if self.ascii_case_insensitive {
self.add_one_byte(opposite_ascii_case(byte));
}
}
}
fn add_one_byte(&mut self, byte: u8) {
if !self.byteset[byte as usize] {
self.byteset[byte as usize] = true;
self.count += 1;
self.rank_sum += freq_rank(byte) as u16;
}
}
}
/// A prefilter for scanning for a single starting byte.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct StartBytesOne {
byte1: u8,
}
#[cfg(feature = "perf-literal")]
impl PrefilterI for StartBytesOne {
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
memchr::memchr(self.byte1, &haystack[span])
.map(|i| span.start + i)
.map_or(Candidate::None, Candidate::PossibleStartOfMatch)
}
}
/// A prefilter for scanning for two starting bytes.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct StartBytesTwo {
byte1: u8,
byte2: u8,
}
#[cfg(feature = "perf-literal")]
impl PrefilterI for StartBytesTwo {
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
memchr::memchr2(self.byte1, self.byte2, &haystack[span])
.map(|i| span.start + i)
.map_or(Candidate::None, Candidate::PossibleStartOfMatch)
}
}
/// A prefilter for scanning for three starting bytes.
#[cfg(feature = "perf-literal")]
#[derive(Clone, Debug)]
struct StartBytesThree {
byte1: u8,
byte2: u8,
byte3: u8,
}
#[cfg(feature = "perf-literal")]
impl PrefilterI for StartBytesThree {
fn find_in(&self, haystack: &[u8], span: Span) -> Candidate {
memchr::memchr3(self.byte1, self.byte2, self.byte3, &haystack[span])
.map(|i| span.start + i)
.map_or(Candidate::None, Candidate::PossibleStartOfMatch)
}
}
/// If the given byte is an ASCII letter, then return it in the opposite case.
/// e.g., Given `b'A'`, this returns `b'a'`, and given `b'a'`, this returns
/// `b'A'`. If a non-ASCII letter is given, then the given byte is returned.
pub(crate) fn opposite_ascii_case(b: u8) -> u8 {
if b'A' <= b && b <= b'Z' {
b.to_ascii_lowercase()
} else if b'a' <= b && b <= b'z' {
b.to_ascii_uppercase()
} else {
b
}
}
/// Return the frequency rank of the given byte. The higher the rank, the more
/// common the byte (heuristically speaking).
fn freq_rank(b: u8) -> u8 {
use crate::util::byte_frequencies::BYTE_FREQUENCIES;
BYTE_FREQUENCIES[b as usize]
}