// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A typesafe bitmask flag generator useful for sets of C-style bitmask flags.
//! It can be used for creating typesafe wrappers around C APIs.
//!
//! The `bitflags!` macro generates `struct`s that manage a set of flags. The
//! flags should only be defined for integer types, otherwise unexpected type
//! errors may occur at compile time.
//!
//! # Example
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! const C = 0b00000100;
//! const ABC = Self::A.bits | Self::B.bits | Self::C.bits;
//! }
//! }
//!
//! fn main() {
//! let e1 = Flags::A | Flags::C;
//! let e2 = Flags::B | Flags::C;
//! assert_eq!((e1 | e2), Flags::ABC); // union
//! assert_eq!((e1 & e2), Flags::C); // intersection
//! assert_eq!((e1 - e2), Flags::A); // set difference
//! assert_eq!(!e2, Flags::A); // set complement
//! }
//! ```
//!
//! See [`example_generated::Flags`](./example_generated/struct.Flags.html) for documentation of code
//! generated by the above `bitflags!` expansion.
//!
//! The generated `struct`s can also be extended with type and trait
//! implementations:
//!
//! ```
//! use std::fmt;
//!
//! use bitflags::bitflags;
//!
//! bitflags! {
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! }
//! }
//!
//! impl Flags {
//! pub fn clear(&mut self) {
//! self.bits = 0; // The `bits` field can be accessed from within the
//! // same module where the `bitflags!` macro was invoked.
//! }
//! }
//!
//! impl fmt::Display for Flags {
//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! write!(f, "hi!")
//! }
//! }
//!
//! fn main() {
//! let mut flags = Flags::A | Flags::B;
//! flags.clear();
//! assert!(flags.is_empty());
//! assert_eq!(format!("{}", flags), "hi!");
//! assert_eq!(format!("{:?}", Flags::A | Flags::B), "A | B");
//! assert_eq!(format!("{:?}", Flags::B), "B");
//! }
//! ```
//!
//! # Visibility
//!
//! The generated structs and their associated flag constants are not exported
//! out of the current module by default. A definition can be exported out of
//! the current module by adding `pub` before `struct`:
//!
//! ```
//! mod example {
//! use bitflags::bitflags;
//!
//! bitflags! {
//! pub struct Flags1: u32 {
//! const A = 0b00000001;
//! }
//!
//! # pub
//! struct Flags2: u32 {
//! const B = 0b00000010;
//! }
//! }
//! }
//!
//! fn main() {
//! let flag1 = example::Flags1::A;
//! let flag2 = example::Flags2::B; // error: const `B` is private
//! }
//! ```
//!
//! # Attributes
//!
//! Attributes can be attached to the generated `struct`s by placing them
//! before the `struct` keyword.
//!
//! ## Representations
//!
//! It's valid to add a `#[repr(C)]` or `#[repr(transparent)]` attribute to a type
//! generated by `bitflags!`. In these cases, the type is guaranteed to be a newtype.
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! #[repr(transparent)]
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! const C = 0b00000100;
//! }
//! }
//! ```
//!
//! # Trait implementations
//!
//! The `Copy`, `Clone`, `PartialEq`, `Eq`, `PartialOrd`, `Ord` and `Hash`
//! traits are automatically derived for the `struct`s using the `derive` attribute.
//! Additional traits can be derived by providing an explicit `derive`
//! attribute on `struct`.
//!
//! The `Extend` and `FromIterator` traits are implemented for the `struct`s,
//! too: `Extend` adds the union of the instances of the `struct` iterated over,
//! while `FromIterator` calculates the union.
//!
//! The `Binary`, `Debug`, `LowerHex`, `Octal` and `UpperHex` traits are also
//! implemented by displaying the bits value of the internal struct.
//!
//! ## Operators
//!
//! The following operator traits are implemented for the generated `struct`s:
//!
//! - `BitOr` and `BitOrAssign`: union
//! - `BitAnd` and `BitAndAssign`: intersection
//! - `BitXor` and `BitXorAssign`: toggle
//! - `Sub` and `SubAssign`: set difference
//! - `Not`: set complement
//!
//! # Methods
//!
//! The following methods are defined for the generated `struct`s:
//!
//! - `empty`: an empty set of flags
//! - `all`: the set of all defined flags
//! - `bits`: the raw value of the flags currently stored
//! - `from_bits`: convert from underlying bit representation, unless that
//! representation contains bits that do not correspond to a
//! defined flag
//! - `from_bits_truncate`: convert from underlying bit representation, dropping
//! any bits that do not correspond to defined flags
//! - `from_bits_unchecked`: convert from underlying bit representation, keeping
//! all bits (even those not corresponding to defined
//! flags)
//! - `is_empty`: `true` if no flags are currently stored
//! - `is_all`: `true` if currently set flags exactly equal all defined flags
//! - `intersects`: `true` if there are flags common to both `self` and `other`
//! - `contains`: `true` if all of the flags in `other` are contained within `self`
//! - `insert`: inserts the specified flags in-place
//! - `remove`: removes the specified flags in-place
//! - `toggle`: the specified flags will be inserted if not present, and removed
//! if they are.
//! - `set`: inserts or removes the specified flags depending on the passed value
//! - `intersection`: returns a new set of flags, containing only the flags present
//! in both `self` and `other` (the argument to the function).
//! - `union`: returns a new set of flags, containing any flags present in
//! either `self` or `other` (the argument to the function).
//! - `difference`: returns a new set of flags, containing all flags present in
//! `self` without any of the flags present in `other` (the
//! argument to the function).
//! - `symmetric_difference`: returns a new set of flags, containing all flags
//! present in either `self` or `other` (the argument
//! to the function), but not both.
//! - `complement`: returns a new set of flags, containing all flags which are
//! not set in `self`, but which are allowed for this type.
//!
//! ## Default
//!
//! The `Default` trait is not automatically implemented for the generated structs.
//!
//! If your default value is equal to `0` (which is the same value as calling `empty()`
//! on the generated struct), you can simply derive `Default`:
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! // Results in default value with bits: 0
//! #[derive(Default)]
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! const C = 0b00000100;
//! }
//! }
//!
//! fn main() {
//! let derived_default: Flags = Default::default();
//! assert_eq!(derived_default.bits(), 0);
//! }
//! ```
//!
//! If your default value is not equal to `0` you need to implement `Default` yourself:
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! const C = 0b00000100;
//! }
//! }
//!
//! // explicit `Default` implementation
//! impl Default for Flags {
//! fn default() -> Flags {
//! Flags::A | Flags::C
//! }
//! }
//!
//! fn main() {
//! let implemented_default: Flags = Default::default();
//! assert_eq!(implemented_default, (Flags::A | Flags::C));
//! }
//! ```
//!
//! # Zero Flags
//!
//! Flags with a value equal to zero will have some strange behavior that one should be aware of.
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! struct Flags: u32 {
//! const NONE = 0b00000000;
//! const SOME = 0b00000001;
//! }
//! }
//!
//! fn main() {
//! let empty = Flags::empty();
//! let none = Flags::NONE;
//! let some = Flags::SOME;
//!
//! // Zero flags are treated as always present
//! assert!(empty.contains(Flags::NONE));
//! assert!(none.contains(Flags::NONE));
//! assert!(some.contains(Flags::NONE));
//!
//! // Zero flags will be ignored when testing for emptiness
//! assert!(none.is_empty());
//! }
//! ```
//!
//! Users should generally avoid defining a flag with a value of zero.
#![cfg_attr(not(test), no_std)]
#![doc(html_root_url = "https://docs.rs/bitflags/1.3.2")]
#[doc(hidden)]
pub extern crate core as _core;
/// The macro used to generate the flag structures.
///
/// See the [crate level docs](../bitflags/index.html) for complete documentation.
///
/// # Example
///
/// ```
/// use bitflags::bitflags;
///
/// bitflags! {
/// struct Flags: u32 {
/// const A = 0b00000001;
/// const B = 0b00000010;
/// const C = 0b00000100;
/// const ABC = Self::A.bits | Self::B.bits | Self::C.bits;
/// }
/// }
///
/// fn main() {
/// let e1 = Flags::A | Flags::C;
/// let e2 = Flags::B | Flags::C;
/// assert_eq!((e1 | e2), Flags::ABC); // union
/// assert_eq!((e1 & e2), Flags::C); // intersection
/// assert_eq!((e1 - e2), Flags::A); // set difference
/// assert_eq!(!e2, Flags::A); // set complement
/// }
/// ```
///
/// The generated `struct`s can also be extended with type and trait
/// implementations:
///
/// ```
/// use std::fmt;
///
/// use bitflags::bitflags;
///
/// bitflags! {
/// struct Flags: u32 {
/// const A = 0b00000001;
/// const B = 0b00000010;
/// }
/// }
///
/// impl Flags {
/// pub fn clear(&mut self) {
/// self.bits = 0; // The `bits` field can be accessed from within the
/// // same module where the `bitflags!` macro was invoked.
/// }
/// }
///
/// impl fmt::Display for Flags {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// write!(f, "hi!")
/// }
/// }
///
/// fn main() {
/// let mut flags = Flags::A | Flags::B;
/// flags.clear();
/// assert!(flags.is_empty());
/// assert_eq!(format!("{}", flags), "hi!");
/// assert_eq!(format!("{:?}", Flags::A | Flags::B), "A | B");
/// assert_eq!(format!("{:?}", Flags::B), "B");
/// }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! bitflags {
(
$(#[$outer:meta])*
$vis:vis struct $BitFlags:ident: $T:ty {
$(
$(#[$inner:ident $($args:tt)*])*
const $Flag:ident = $value:expr;
)*
}
$($t:tt)*
) => {
$(#[$outer])*
#[derive(Copy, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)]
$vis struct $BitFlags {
bits: $T,
}
__impl_bitflags! {
$BitFlags: $T {
$(
$(#[$inner $($args)*])*
$Flag = $value;
)*
}
}
bitflags! {
$($t)*
}
};
() => {};
}
// A helper macro to implement the `all` function.
#[macro_export(local_inner_macros)]
#[doc(hidden)]
macro_rules! __impl_all_bitflags {
(
$BitFlags:ident: $T:ty {
$(
$(#[$attr:ident $($args:tt)*])*
$Flag:ident = $value:expr;
)+
}
) => {
// See `Debug::fmt` for why this approach is taken.
#[allow(non_snake_case)]
trait __BitFlags {
$(
const $Flag: $T = 0;
)+
}
#[allow(non_snake_case)]
impl __BitFlags for $BitFlags {
$(
__impl_bitflags! {
#[allow(deprecated)]
$(? #[$attr $($args)*])*
const $Flag: $T = Self::$Flag.bits;
}
)+
}
Self { bits: $(<Self as __BitFlags>::$Flag)|+ }
};
(
$BitFlags:ident: $T:ty { }
) => {
Self { bits: 0 }
};
}
#[macro_export(local_inner_macros)]
#[doc(hidden)]
macro_rules! __impl_bitflags {
(
$BitFlags:ident: $T:ty {
$(
$(#[$attr:ident $($args:tt)*])*
$Flag:ident = $value:expr;
)*
}
) => {
impl $crate::_core::fmt::Debug for $BitFlags {
fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result {
// This convoluted approach is to handle #[cfg]-based flag
// omission correctly. For example it needs to support:
//
// #[cfg(unix)] const A: Flag = /* ... */;
// #[cfg(windows)] const B: Flag = /* ... */;
// Unconditionally define a check for every flag, even disabled
// ones.
#[allow(non_snake_case)]
trait __BitFlags {
$(
#[inline]
fn $Flag(&self) -> bool { false }
)*
}
// Conditionally override the check for just those flags that
// are not #[cfg]ed away.
#[allow(non_snake_case)]
impl __BitFlags for $BitFlags {
$(
__impl_bitflags! {
#[allow(deprecated)]
#[inline]
$(? #[$attr $($args)*])*
fn $Flag(&self) -> bool {
if Self::$Flag.bits == 0 && self.bits != 0 {
false
} else {
self.bits & Self::$Flag.bits == Self::$Flag.bits
}
}
}
)*
}
let mut first = true;
$(
if <Self as __BitFlags>::$Flag(self) {
if !first {
f.write_str(" | ")?;
}
first = false;
f.write_str($crate::_core::stringify!($Flag))?;
}
)*
let extra_bits = self.bits & !Self::all().bits();
if extra_bits != 0 {
if !first {
f.write_str(" | ")?;
}
first = false;
f.write_str("0x")?;
$crate::_core::fmt::LowerHex::fmt(&extra_bits, f)?;
}
if first {
f.write_str("(empty)")?;
}
Ok(())
}
}
impl $crate::_core::fmt::Binary for $BitFlags {
fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result {
$crate::_core::fmt::Binary::fmt(&self.bits, f)
}
}
impl $crate::_core::fmt::Octal for $BitFlags {
fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result {
$crate::_core::fmt::Octal::fmt(&self.bits, f)
}
}
impl $crate::_core::fmt::LowerHex for $BitFlags {
fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result {
$crate::_core::fmt::LowerHex::fmt(&self.bits, f)
}
}
impl $crate::_core::fmt::UpperHex for $BitFlags {
fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result {
$crate::_core::fmt::UpperHex::fmt(&self.bits, f)
}
}
#[allow(dead_code)]
impl $BitFlags {
$(
$(#[$attr $($args)*])*
pub const $Flag: Self = Self { bits: $value };
)*
/// Returns an empty set of flags.
#[inline]
pub const fn empty() -> Self {
Self { bits: 0 }
}
/// Returns the set containing all flags.
#[inline]
pub const fn all() -> Self {
__impl_all_bitflags! {
$BitFlags: $T {
$(
$(#[$attr $($args)*])*
$Flag = $value;
)*
}
}
}
/// Returns the raw value of the flags currently stored.
#[inline]
pub const fn bits(&self) -> $T {
self.bits
}
/// Convert from underlying bit representation, unless that
/// representation contains bits that do not correspond to a flag.
#[inline]
pub const fn from_bits(bits: $T) -> $crate::_core::option::Option<Self> {
if (bits & !Self::all().bits()) == 0 {
$crate::_core::option::Option::Some(Self { bits })
} else {
$crate::_core::option::Option::None
}
}
/// Convert from underlying bit representation, dropping any bits
/// that do not correspond to flags.
#[inline]
pub const fn from_bits_truncate(bits: $T) -> Self {
Self { bits: bits & Self::all().bits }
}
/// Convert from underlying bit representation, preserving all
/// bits (even those not corresponding to a defined flag).
///
/// # Safety
///
/// The caller of the `bitflags!` macro can chose to allow or
/// disallow extra bits for their bitflags type.
///
/// The caller of `from_bits_unchecked()` has to ensure that
/// all bits correspond to a defined flag or that extra bits
/// are valid for this bitflags type.
#[inline]
pub const unsafe fn from_bits_unchecked(bits: $T) -> Self {
Self { bits }
}
/// Returns `true` if no flags are currently stored.
#[inline]
pub const fn is_empty(&self) -> bool {
self.bits() == Self::empty().bits()
}
/// Returns `true` if all flags are currently set.
#[inline]
pub const fn is_all(&self) -> bool {
Self::all().bits | self.bits == self.bits
}
/// Returns `true` if there are flags common to both `self` and `other`.
#[inline]
pub const fn intersects(&self, other: Self) -> bool {
!(Self { bits: self.bits & other.bits}).is_empty()
}
/// Returns `true` if all of the flags in `other` are contained within `self`.
#[inline]
pub const fn contains(&self, other: Self) -> bool {
(self.bits & other.bits) == other.bits
}
/// Inserts the specified flags in-place.
#[inline]
pub fn insert(&mut self, other: Self) {
self.bits |= other.bits;
}
/// Removes the specified flags in-place.
#[inline]
pub fn remove(&mut self, other: Self) {
self.bits &= !other.bits;
}
/// Toggles the specified flags in-place.
#[inline]
pub fn toggle(&mut self, other: Self) {
self.bits ^= other.bits;
}
/// Inserts or removes the specified flags depending on the passed value.
#[inline]
pub fn set(&mut self, other: Self, value: bool) {
if value {
self.insert(other);
} else {
self.remove(other);
}
}
/// Returns the intersection between the flags in `self` and
/// `other`.
///
/// Specifically, the returned set contains only the flags which are
/// present in *both* `self` *and* `other`.
///
/// This is equivalent to using the `&` operator (e.g.
/// [`ops::BitAnd`]), as in `flags & other`.
///
/// [`ops::BitAnd`]: https://doc.rust-lang.org/std/ops/trait.BitAnd.html
#[inline]
#[must_use]
pub const fn intersection(self, other: Self) -> Self {
Self { bits: self.bits & other.bits }
}
/// Returns the union of between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags which are
/// present in *either* `self` *or* `other`, including any which are
/// present in both (see [`Self::symmetric_difference`] if that
/// is undesirable).
///
/// This is equivalent to using the `|` operator (e.g.
/// [`ops::BitOr`]), as in `flags | other`.
///
/// [`ops::BitOr`]: https://doc.rust-lang.org/std/ops/trait.BitOr.html
#[inline]
#[must_use]
pub const fn union(self, other: Self) -> Self {
Self { bits: self.bits | other.bits }
}
/// Returns the difference between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags present in
/// `self`, except for the ones present in `other`.
///
/// It is also conceptually equivalent to the "bit-clear" operation:
/// `flags & !other` (and this syntax is also supported).
///
/// This is equivalent to using the `-` operator (e.g.
/// [`ops::Sub`]), as in `flags - other`.
///
/// [`ops::Sub`]: https://doc.rust-lang.org/std/ops/trait.Sub.html
#[inline]
#[must_use]
pub const fn difference(self, other: Self) -> Self {
Self { bits: self.bits & !other.bits }
}
/// Returns the [symmetric difference][sym-diff] between the flags
/// in `self` and `other`.
///
/// Specifically, the returned set contains the flags present which
/// are present in `self` or `other`, but that are not present in
/// both. Equivalently, it contains the flags present in *exactly
/// one* of the sets `self` and `other`.
///
/// This is equivalent to using the `^` operator (e.g.
/// [`ops::BitXor`]), as in `flags ^ other`.
///
/// [sym-diff]: https://en.wikipedia.org/wiki/Symmetric_difference
/// [`ops::BitXor`]: https://doc.rust-lang.org/std/ops/trait.BitXor.html
#[inline]
#[must_use]
pub const fn symmetric_difference(self, other: Self) -> Self {
Self { bits: self.bits ^ other.bits }
}
/// Returns the complement of this set of flags.
///
/// Specifically, the returned set contains all the flags which are
/// not set in `self`, but which are allowed for this type.
///
/// Alternatively, it can be thought of as the set difference
/// between [`Self::all()`] and `self` (e.g. `Self::all() - self`)
///
/// This is equivalent to using the `!` operator (e.g.
/// [`ops::Not`]), as in `!flags`.
///
/// [`Self::all()`]: Self::all
/// [`ops::Not`]: https://doc.rust-lang.org/std/ops/trait.Not.html
#[inline]
#[must_use]
pub const fn complement(self) -> Self {
Self::from_bits_truncate(!self.bits)
}
}
impl $crate::_core::ops::BitOr for $BitFlags {
type Output = Self;
/// Returns the union of the two sets of flags.
#[inline]
fn bitor(self, other: $BitFlags) -> Self {
Self { bits: self.bits | other.bits }
}
}
impl $crate::_core::ops::BitOrAssign for $BitFlags {
/// Adds the set of flags.
#[inline]
fn bitor_assign(&mut self, other: Self) {
self.bits |= other.bits;
}
}
impl $crate::_core::ops::BitXor for $BitFlags {
type Output = Self;
/// Returns the left flags, but with all the right flags toggled.
#[inline]
fn bitxor(self, other: Self) -> Self {
Self { bits: self.bits ^ other.bits }
}
}
impl $crate::_core::ops::BitXorAssign for $BitFlags {
/// Toggles the set of flags.
#[inline]
fn bitxor_assign(&mut self, other: Self) {
self.bits ^= other.bits;
}
}
impl $crate::_core::ops::BitAnd for $BitFlags {
type Output = Self;
/// Returns the intersection between the two sets of flags.
#[inline]
fn bitand(self, other: Self) -> Self {
Self { bits: self.bits & other.bits }
}
}
impl $crate::_core::ops::BitAndAssign for $BitFlags {
/// Disables all flags disabled in the set.
#[inline]
fn bitand_assign(&mut self, other: Self) {
self.bits &= other.bits;
}
}
impl $crate::_core::ops::Sub for $BitFlags {
type Output = Self;
/// Returns the set difference of the two sets of flags.
#[inline]
fn sub(self, other: Self) -> Self {
Self { bits: self.bits & !other.bits }
}
}
impl $crate::_core::ops::SubAssign for $BitFlags {
/// Disables all flags enabled in the set.
#[inline]
fn sub_assign(&mut self, other: Self) {
self.bits &= !other.bits;
}
}
impl $crate::_core::ops::Not for $BitFlags {
type Output = Self;
/// Returns the complement of this set of flags.
#[inline]
fn not(self) -> Self {
Self { bits: !self.bits } & Self::all()
}
}
impl $crate::_core::iter::Extend<$BitFlags> for $BitFlags {
fn extend<T: $crate::_core::iter::IntoIterator<Item=Self>>(&mut self, iterator: T) {
for item in iterator {
self.insert(item)
}
}
}
impl $crate::_core::iter::FromIterator<$BitFlags> for $BitFlags {
fn from_iter<T: $crate::_core::iter::IntoIterator<Item=Self>>(iterator: T) -> Self {
let mut result = Self::empty();
result.extend(iterator);
result
}
}
};
// Every attribute that the user writes on a const is applied to the
// corresponding const that we generate, but within the implementation of
// Debug and all() we want to ignore everything but #[cfg] attributes. In
// particular, including a #[deprecated] attribute on those items would fail
// to compile.
// https://github.com/bitflags/bitflags/issues/109
//
// Input:
//
// ? #[cfg(feature = "advanced")]
// ? #[deprecated(note = "Use something else.")]
// ? #[doc = r"High quality documentation."]
// fn f() -> i32 { /* ... */ }
//
// Output:
//
// #[cfg(feature = "advanced")]
// fn f() -> i32 { /* ... */ }
(
$(#[$filtered:meta])*
? #[cfg $($cfgargs:tt)*]
$(? #[$rest:ident $($restargs:tt)*])*
fn $($item:tt)*
) => {
__impl_bitflags! {
$(#[$filtered])*
#[cfg $($cfgargs)*]
$(? #[$rest $($restargs)*])*
fn $($item)*
}
};
(
$(#[$filtered:meta])*
// $next != `cfg`
? #[$next:ident $($nextargs:tt)*]
$(? #[$rest:ident $($restargs:tt)*])*
fn $($item:tt)*
) => {
__impl_bitflags! {
$(#[$filtered])*
// $next filtered out
$(? #[$rest $($restargs)*])*
fn $($item)*
}
};
(
$(#[$filtered:meta])*
fn $($item:tt)*
) => {
$(#[$filtered])*
fn $($item)*
};
// Every attribute that the user writes on a const is applied to the
// corresponding const that we generate, but within the implementation of
// Debug and all() we want to ignore everything but #[cfg] attributes. In
// particular, including a #[deprecated] attribute on those items would fail
// to compile.
// https://github.com/bitflags/bitflags/issues/109
//
// const version
//
// Input:
//
// ? #[cfg(feature = "advanced")]
// ? #[deprecated(note = "Use something else.")]
// ? #[doc = r"High quality documentation."]
// const f: i32 { /* ... */ }
//
// Output:
//
// #[cfg(feature = "advanced")]
// const f: i32 { /* ... */ }
(
$(#[$filtered:meta])*
? #[cfg $($cfgargs:tt)*]
$(? #[$rest:ident $($restargs:tt)*])*
const $($item:tt)*
) => {
__impl_bitflags! {
$(#[$filtered])*
#[cfg $($cfgargs)*]
$(? #[$rest $($restargs)*])*
const $($item)*
}
};
(
$(#[$filtered:meta])*
// $next != `cfg`
? #[$next:ident $($nextargs:tt)*]
$(? #[$rest:ident $($restargs:tt)*])*
const $($item:tt)*
) => {
__impl_bitflags! {
$(#[$filtered])*
// $next filtered out
$(? #[$rest $($restargs)*])*
const $($item)*
}
};
(
$(#[$filtered:meta])*
const $($item:tt)*
) => {
$(#[$filtered])*
const $($item)*
};
}
#[cfg(feature = "example_generated")]
pub mod example_generated;
#[cfg(test)]
mod tests {
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
bitflags! {
#[doc = "> The first principle is that you must not fool yourself — and"]
#[doc = "> you are the easiest person to fool."]
#[doc = "> "]
#[doc = "> - Richard Feynman"]
#[derive(Default)]
struct Flags: u32 {
const A = 0b00000001;
#[doc = "<pcwalton> macros are way better at generating code than trans is"]
const B = 0b00000010;
const C = 0b00000100;
#[doc = "* cmr bed"]
#[doc = "* strcat table"]
#[doc = "<strcat> wait what?"]
const ABC = Self::A.bits | Self::B.bits | Self::C.bits;
}
struct _CfgFlags: u32 {
#[cfg(unix)]
const _CFG_A = 0b01;
#[cfg(windows)]
const _CFG_B = 0b01;
#[cfg(unix)]
const _CFG_C = Self::_CFG_A.bits | 0b10;
}
struct AnotherSetOfFlags: i8 {
const ANOTHER_FLAG = -1_i8;
}
struct LongFlags: u32 {
const LONG_A = 0b1111111111111111;
}
}
bitflags! {
struct EmptyFlags: u32 {
}
}
#[test]
fn test_bits() {
assert_eq!(Flags::empty().bits(), 0b00000000);
assert_eq!(Flags::A.bits(), 0b00000001);
assert_eq!(Flags::ABC.bits(), 0b00000111);
assert_eq!(AnotherSetOfFlags::empty().bits(), 0b00);
assert_eq!(AnotherSetOfFlags::ANOTHER_FLAG.bits(), !0_i8);
assert_eq!(EmptyFlags::empty().bits(), 0b00000000);
}
#[test]
fn test_from_bits() {
assert_eq!(Flags::from_bits(0), Some(Flags::empty()));
assert_eq!(Flags::from_bits(0b1), Some(Flags::A));
assert_eq!(Flags::from_bits(0b10), Some(Flags::B));
assert_eq!(Flags::from_bits(0b11), Some(Flags::A | Flags::B));
assert_eq!(Flags::from_bits(0b1000), None);
assert_eq!(
AnotherSetOfFlags::from_bits(!0_i8),
Some(AnotherSetOfFlags::ANOTHER_FLAG)
);
assert_eq!(EmptyFlags::from_bits(0), Some(EmptyFlags::empty()));
assert_eq!(EmptyFlags::from_bits(0b1), None);
}
#[test]
fn test_from_bits_truncate() {
assert_eq!(Flags::from_bits_truncate(0), Flags::empty());
assert_eq!(Flags::from_bits_truncate(0b1), Flags::A);
assert_eq!(Flags::from_bits_truncate(0b10), Flags::B);
assert_eq!(Flags::from_bits_truncate(0b11), (Flags::A | Flags::B));
assert_eq!(Flags::from_bits_truncate(0b1000), Flags::empty());
assert_eq!(Flags::from_bits_truncate(0b1001), Flags::A);
assert_eq!(
AnotherSetOfFlags::from_bits_truncate(0_i8),
AnotherSetOfFlags::empty()
);
assert_eq!(EmptyFlags::from_bits_truncate(0), EmptyFlags::empty());
assert_eq!(EmptyFlags::from_bits_truncate(0b1), EmptyFlags::empty());
}
#[test]
fn test_from_bits_unchecked() {
let extra = unsafe { Flags::from_bits_unchecked(0b1000) };
assert_eq!(unsafe { Flags::from_bits_unchecked(0) }, Flags::empty());
assert_eq!(unsafe { Flags::from_bits_unchecked(0b1) }, Flags::A);
assert_eq!(unsafe { Flags::from_bits_unchecked(0b10) }, Flags::B);
assert_eq!(
unsafe { Flags::from_bits_unchecked(0b11) },
(Flags::A | Flags::B)
);
assert_eq!(
unsafe { Flags::from_bits_unchecked(0b1000) },
(extra | Flags::empty())
);
assert_eq!(
unsafe { Flags::from_bits_unchecked(0b1001) },
(extra | Flags::A)
);
let extra = unsafe { EmptyFlags::from_bits_unchecked(0b1000) };
assert_eq!(
unsafe { EmptyFlags::from_bits_unchecked(0b1000) },
(extra | EmptyFlags::empty())
);
}
#[test]
fn test_is_empty() {
assert!(Flags::empty().is_empty());
assert!(!Flags::A.is_empty());
assert!(!Flags::ABC.is_empty());
assert!(!AnotherSetOfFlags::ANOTHER_FLAG.is_empty());
assert!(EmptyFlags::empty().is_empty());
assert!(EmptyFlags::all().is_empty());
}
#[test]
fn test_is_all() {
assert!(Flags::all().is_all());
assert!(!Flags::A.is_all());
assert!(Flags::ABC.is_all());
let extra = unsafe { Flags::from_bits_unchecked(0b1000) };
assert!(!extra.is_all());
assert!(!(Flags::A | extra).is_all());
assert!((Flags::ABC | extra).is_all());
assert!(AnotherSetOfFlags::ANOTHER_FLAG.is_all());
assert!(EmptyFlags::all().is_all());
assert!(EmptyFlags::empty().is_all());
}
#[test]
fn test_two_empties_do_not_intersect() {
let e1 = Flags::empty();
let e2 = Flags::empty();
assert!(!e1.intersects(e2));
assert!(AnotherSetOfFlags::ANOTHER_FLAG.intersects(AnotherSetOfFlags::ANOTHER_FLAG));
}
#[test]
fn test_empty_does_not_intersect_with_full() {
let e1 = Flags::empty();
let e2 = Flags::ABC;
assert!(!e1.intersects(e2));
}
#[test]
fn test_disjoint_intersects() {
let e1 = Flags::A;
let e2 = Flags::B;
assert!(!e1.intersects(e2));
}
#[test]
fn test_overlapping_intersects() {
let e1 = Flags::A;
let e2 = Flags::A | Flags::B;
assert!(e1.intersects(e2));
}
#[test]
fn test_contains() {
let e1 = Flags::A;
let e2 = Flags::A | Flags::B;
assert!(!e1.contains(e2));
assert!(e2.contains(e1));
assert!(Flags::ABC.contains(e2));
assert!(AnotherSetOfFlags::ANOTHER_FLAG.contains(AnotherSetOfFlags::ANOTHER_FLAG));
assert!(EmptyFlags::empty().contains(EmptyFlags::empty()));
}
#[test]
fn test_insert() {
let mut e1 = Flags::A;
let e2 = Flags::A | Flags::B;
e1.insert(e2);
assert_eq!(e1, e2);
let mut e3 = AnotherSetOfFlags::empty();
e3.insert(AnotherSetOfFlags::ANOTHER_FLAG);
assert_eq!(e3, AnotherSetOfFlags::ANOTHER_FLAG);
}
#[test]
fn test_remove() {
let mut e1 = Flags::A | Flags::B;
let e2 = Flags::A | Flags::C;
e1.remove(e2);
assert_eq!(e1, Flags::B);
let mut e3 = AnotherSetOfFlags::ANOTHER_FLAG;
e3.remove(AnotherSetOfFlags::ANOTHER_FLAG);
assert_eq!(e3, AnotherSetOfFlags::empty());
}
#[test]
fn test_operators() {
let e1 = Flags::A | Flags::C;
let e2 = Flags::B | Flags::C;
assert_eq!((e1 | e2), Flags::ABC); // union
assert_eq!((e1 & e2), Flags::C); // intersection
assert_eq!((e1 - e2), Flags::A); // set difference
assert_eq!(!e2, Flags::A); // set complement
assert_eq!(e1 ^ e2, Flags::A | Flags::B); // toggle
let mut e3 = e1;
e3.toggle(e2);
assert_eq!(e3, Flags::A | Flags::B);
let mut m4 = AnotherSetOfFlags::empty();
m4.toggle(AnotherSetOfFlags::empty());
assert_eq!(m4, AnotherSetOfFlags::empty());
}
#[test]
fn test_operators_unchecked() {
let extra = unsafe { Flags::from_bits_unchecked(0b1000) };
let e1 = Flags::A | Flags::C | extra;
let e2 = Flags::B | Flags::C;
assert_eq!((e1 | e2), (Flags::ABC | extra)); // union
assert_eq!((e1 & e2), Flags::C); // intersection
assert_eq!((e1 - e2), (Flags::A | extra)); // set difference
assert_eq!(!e2, Flags::A); // set complement
assert_eq!(!e1, Flags::B); // set complement
assert_eq!(e1 ^ e2, Flags::A | Flags::B | extra); // toggle
let mut e3 = e1;
e3.toggle(e2);
assert_eq!(e3, Flags::A | Flags::B | extra);
}
#[test]
fn test_set_ops_basic() {
let ab = Flags::A.union(Flags::B);
let ac = Flags::A.union(Flags::C);
let bc = Flags::B.union(Flags::C);
assert_eq!(ab.bits, 0b011);
assert_eq!(bc.bits, 0b110);
assert_eq!(ac.bits, 0b101);
assert_eq!(ab, Flags::B.union(Flags::A));
assert_eq!(ac, Flags::C.union(Flags::A));
assert_eq!(bc, Flags::C.union(Flags::B));
assert_eq!(ac, Flags::A | Flags::C);
assert_eq!(bc, Flags::B | Flags::C);
assert_eq!(ab.union(bc), Flags::ABC);
assert_eq!(ac, Flags::A | Flags::C);
assert_eq!(bc, Flags::B | Flags::C);
assert_eq!(ac.union(bc), ac | bc);
assert_eq!(ac.union(bc), Flags::ABC);
assert_eq!(bc.union(ac), Flags::ABC);
assert_eq!(ac.intersection(bc), ac & bc);
assert_eq!(ac.intersection(bc), Flags::C);
assert_eq!(bc.intersection(ac), Flags::C);
assert_eq!(ac.difference(bc), ac - bc);
assert_eq!(bc.difference(ac), bc - ac);
assert_eq!(ac.difference(bc), Flags::A);
assert_eq!(bc.difference(ac), Flags::B);
assert_eq!(bc.complement(), !bc);
assert_eq!(bc.complement(), Flags::A);
assert_eq!(ac.symmetric_difference(bc), Flags::A.union(Flags::B));
assert_eq!(bc.symmetric_difference(ac), Flags::A.union(Flags::B));
}
#[test]
fn test_set_ops_const() {
// These just test that these compile and don't cause use-site panics
// (would be possible if we had some sort of UB)
const INTERSECT: Flags = Flags::all().intersection(Flags::C);
const UNION: Flags = Flags::A.union(Flags::C);
const DIFFERENCE: Flags = Flags::all().difference(Flags::A);
const COMPLEMENT: Flags = Flags::C.complement();
const SYM_DIFFERENCE: Flags = UNION.symmetric_difference(DIFFERENCE);
assert_eq!(INTERSECT, Flags::C);
assert_eq!(UNION, Flags::A | Flags::C);
assert_eq!(DIFFERENCE, Flags::all() - Flags::A);
assert_eq!(COMPLEMENT, !Flags::C);
assert_eq!(SYM_DIFFERENCE, (Flags::A | Flags::C) ^ (Flags::all() - Flags::A));
}
#[test]
fn test_set_ops_unchecked() {
let extra = unsafe { Flags::from_bits_unchecked(0b1000) };
let e1 = Flags::A.union(Flags::C).union(extra);
let e2 = Flags::B.union(Flags::C);
assert_eq!(e1.bits, 0b1101);
assert_eq!(e1.union(e2), (Flags::ABC | extra));
assert_eq!(e1.intersection(e2), Flags::C);
assert_eq!(e1.difference(e2), Flags::A | extra);
assert_eq!(e2.difference(e1), Flags::B);
assert_eq!(e2.complement(), Flags::A);
assert_eq!(e1.complement(), Flags::B);
assert_eq!(e1.symmetric_difference(e2), Flags::A | Flags::B | extra); // toggle
}
#[test]
fn test_set_ops_exhaustive() {
// Define a flag that contains gaps to help exercise edge-cases,
// especially around "unknown" flags (e.g. ones outside of `all()`
// `from_bits_unchecked`).
// - when lhs and rhs both have different sets of unknown flags.
// - unknown flags at both ends, and in the middle
// - cases with "gaps".
bitflags! {
struct Test: u16 {
// Intentionally no `A`
const B = 0b000000010;
// Intentionally no `C`
const D = 0b000001000;
const E = 0b000010000;
const F = 0b000100000;
const G = 0b001000000;
// Intentionally no `H`
const I = 0b100000000;
}
}
let iter_test_flags =
|| (0..=0b111_1111_1111).map(|bits| unsafe { Test::from_bits_unchecked(bits) });
for a in iter_test_flags() {
assert_eq!(
a.complement(),
Test::from_bits_truncate(!a.bits),
"wrong result: !({:?})",
a,
);
assert_eq!(a.complement(), !a, "named != op: !({:?})", a);
for b in iter_test_flags() {
// Check that the named operations produce the expected bitwise
// values.
assert_eq!(
a.union(b).bits,
a.bits | b.bits,
"wrong result: `{:?}` | `{:?}`",
a,
b,
);
assert_eq!(
a.intersection(b).bits,
a.bits & b.bits,
"wrong result: `{:?}` & `{:?}`",
a,
b,
);
assert_eq!(
a.symmetric_difference(b).bits,
a.bits ^ b.bits,
"wrong result: `{:?}` ^ `{:?}`",
a,
b,
);
assert_eq!(
a.difference(b).bits,
a.bits & !b.bits,
"wrong result: `{:?}` - `{:?}`",
a,
b,
);
// Note: Difference is checked as both `a - b` and `b - a`
assert_eq!(
b.difference(a).bits,
b.bits & !a.bits,
"wrong result: `{:?}` - `{:?}`",
b,
a,
);
// Check that the named set operations are equivalent to the
// bitwise equivalents
assert_eq!(a.union(b), a | b, "named != op: `{:?}` | `{:?}`", a, b,);
assert_eq!(
a.intersection(b),
a & b,
"named != op: `{:?}` & `{:?}`",
a,
b,
);
assert_eq!(
a.symmetric_difference(b),
a ^ b,
"named != op: `{:?}` ^ `{:?}`",
a,
b,
);
assert_eq!(a.difference(b), a - b, "named != op: `{:?}` - `{:?}`", a, b,);
// Note: Difference is checked as both `a - b` and `b - a`
assert_eq!(b.difference(a), b - a, "named != op: `{:?}` - `{:?}`", b, a,);
// Verify that the operations which should be symmetric are
// actually symmetric.
assert_eq!(a.union(b), b.union(a), "asymmetry: `{:?}` | `{:?}`", a, b,);
assert_eq!(
a.intersection(b),
b.intersection(a),
"asymmetry: `{:?}` & `{:?}`",
a,
b,
);
assert_eq!(
a.symmetric_difference(b),
b.symmetric_difference(a),
"asymmetry: `{:?}` ^ `{:?}`",
a,
b,
);
}
}
}
#[test]
fn test_set() {
let mut e1 = Flags::A | Flags::C;
e1.set(Flags::B, true);
e1.set(Flags::C, false);
assert_eq!(e1, Flags::A | Flags::B);
}
#[test]
fn test_assignment_operators() {
let mut m1 = Flags::empty();
let e1 = Flags::A | Flags::C;
// union
m1 |= Flags::A;
assert_eq!(m1, Flags::A);
// intersection
m1 &= e1;
assert_eq!(m1, Flags::A);
// set difference
m1 -= m1;
assert_eq!(m1, Flags::empty());
// toggle
m1 ^= e1;
assert_eq!(m1, e1);
}
#[test]
fn test_const_fn() {
const _M1: Flags = Flags::empty();
const M2: Flags = Flags::A;
assert_eq!(M2, Flags::A);
const M3: Flags = Flags::C;
assert_eq!(M3, Flags::C);
}
#[test]
fn test_extend() {
let mut flags;
flags = Flags::empty();
flags.extend([].iter().cloned());
assert_eq!(flags, Flags::empty());
flags = Flags::empty();
flags.extend([Flags::A, Flags::B].iter().cloned());
assert_eq!(flags, Flags::A | Flags::B);
flags = Flags::A;
flags.extend([Flags::A, Flags::B].iter().cloned());
assert_eq!(flags, Flags::A | Flags::B);
flags = Flags::B;
flags.extend([Flags::A, Flags::ABC].iter().cloned());
assert_eq!(flags, Flags::ABC);
}
#[test]
fn test_from_iterator() {
assert_eq!([].iter().cloned().collect::<Flags>(), Flags::empty());
assert_eq!(
[Flags::A, Flags::B].iter().cloned().collect::<Flags>(),
Flags::A | Flags::B
);
assert_eq!(
[Flags::A, Flags::ABC].iter().cloned().collect::<Flags>(),
Flags::ABC
);
}
#[test]
fn test_lt() {
let mut a = Flags::empty();
let mut b = Flags::empty();
assert!(!(a < b) && !(b < a));
b = Flags::B;
assert!(a < b);
a = Flags::C;
assert!(!(a < b) && b < a);
b = Flags::C | Flags::B;
assert!(a < b);
}
#[test]
fn test_ord() {
let mut a = Flags::empty();
let mut b = Flags::empty();
assert!(a <= b && a >= b);
a = Flags::A;
assert!(a > b && a >= b);
assert!(b < a && b <= a);
b = Flags::B;
assert!(b > a && b >= a);
assert!(a < b && a <= b);
}
fn hash<T: Hash>(t: &T) -> u64 {
let mut s = DefaultHasher::new();
t.hash(&mut s);
s.finish()
}
#[test]
fn test_hash() {
let mut x = Flags::empty();
let mut y = Flags::empty();
assert_eq!(hash(&x), hash(&y));
x = Flags::all();
y = Flags::ABC;
assert_eq!(hash(&x), hash(&y));
}
#[test]
fn test_default() {
assert_eq!(Flags::empty(), Flags::default());
}
#[test]
fn test_debug() {
assert_eq!(format!("{:?}", Flags::A | Flags::B), "A | B");
assert_eq!(format!("{:?}", Flags::empty()), "(empty)");
assert_eq!(format!("{:?}", Flags::ABC), "A | B | C | ABC");
let extra = unsafe { Flags::from_bits_unchecked(0xb8) };
assert_eq!(format!("{:?}", extra), "0xb8");
assert_eq!(format!("{:?}", Flags::A | extra), "A | 0xb8");
assert_eq!(
format!("{:?}", Flags::ABC | extra),
"A | B | C | ABC | 0xb8"
);
assert_eq!(format!("{:?}", EmptyFlags::empty()), "(empty)");
}
#[test]
fn test_binary() {
assert_eq!(format!("{:b}", Flags::ABC), "111");
assert_eq!(format!("{:#b}", Flags::ABC), "0b111");
let extra = unsafe { Flags::from_bits_unchecked(0b1010000) };
assert_eq!(format!("{:b}", Flags::ABC | extra), "1010111");
assert_eq!(format!("{:#b}", Flags::ABC | extra), "0b1010111");
}
#[test]
fn test_octal() {
assert_eq!(format!("{:o}", LongFlags::LONG_A), "177777");
assert_eq!(format!("{:#o}", LongFlags::LONG_A), "0o177777");
let extra = unsafe { LongFlags::from_bits_unchecked(0o5000000) };
assert_eq!(format!("{:o}", LongFlags::LONG_A | extra), "5177777");
assert_eq!(format!("{:#o}", LongFlags::LONG_A | extra), "0o5177777");
}
#[test]
fn test_lowerhex() {
assert_eq!(format!("{:x}", LongFlags::LONG_A), "ffff");
assert_eq!(format!("{:#x}", LongFlags::LONG_A), "0xffff");
let extra = unsafe { LongFlags::from_bits_unchecked(0xe00000) };
assert_eq!(format!("{:x}", LongFlags::LONG_A | extra), "e0ffff");
assert_eq!(format!("{:#x}", LongFlags::LONG_A | extra), "0xe0ffff");
}
#[test]
fn test_upperhex() {
assert_eq!(format!("{:X}", LongFlags::LONG_A), "FFFF");
assert_eq!(format!("{:#X}", LongFlags::LONG_A), "0xFFFF");
let extra = unsafe { LongFlags::from_bits_unchecked(0xe00000) };
assert_eq!(format!("{:X}", LongFlags::LONG_A | extra), "E0FFFF");
assert_eq!(format!("{:#X}", LongFlags::LONG_A | extra), "0xE0FFFF");
}
mod submodule {
bitflags! {
pub struct PublicFlags: i8 {
const X = 0;
}
struct PrivateFlags: i8 {
const Y = 0;
}
}
#[test]
fn test_private() {
let _ = PrivateFlags::Y;
}
}
#[test]
fn test_public() {
let _ = submodule::PublicFlags::X;
}
mod t1 {
mod foo {
pub type Bar = i32;
}
bitflags! {
/// baz
struct Flags: foo::Bar {
const A = 0b00000001;
#[cfg(foo)]
const B = 0b00000010;
#[cfg(foo)]
const C = 0b00000010;
}
}
}
#[test]
fn test_in_function() {
bitflags! {
struct Flags: u8 {
const A = 1;
#[cfg(any())] // false
const B = 2;
}
}
assert_eq!(Flags::all(), Flags::A);
assert_eq!(format!("{:?}", Flags::A), "A");
}
#[test]
fn test_deprecated() {
bitflags! {
pub struct TestFlags: u32 {
#[deprecated(note = "Use something else.")]
const ONE = 1;
}
}
}
#[test]
fn test_pub_crate() {
mod module {
bitflags! {
pub (crate) struct Test: u8 {
const FOO = 1;
}
}
}
assert_eq!(module::Test::FOO.bits(), 1);
}
#[test]
fn test_pub_in_module() {
mod module {
mod submodule {
bitflags! {
// `pub (in super)` means only the module `module` will
// be able to access this.
pub (in super) struct Test: u8 {
const FOO = 1;
}
}
}
mod test {
// Note: due to `pub (in super)`,
// this cannot be accessed directly by the testing code.
pub(super) fn value() -> u8 {
super::submodule::Test::FOO.bits()
}
}
pub fn value() -> u8 {
test::value()
}
}
assert_eq!(module::value(), 1)
}
#[test]
fn test_zero_value_flags() {
bitflags! {
struct Flags: u32 {
const NONE = 0b0;
const SOME = 0b1;
}
}
assert!(Flags::empty().contains(Flags::NONE));
assert!(Flags::SOME.contains(Flags::NONE));
assert!(Flags::NONE.is_empty());
assert_eq!(format!("{:?}", Flags::empty()), "NONE");
assert_eq!(format!("{:?}", Flags::SOME), "SOME");
}
#[test]
fn test_empty_bitflags() {
bitflags! {}
}
#[test]
fn test_u128_bitflags() {
bitflags! {
struct Flags128: u128 {
const A = 0x0000_0000_0000_0000_0000_0000_0000_0001;
const B = 0x0000_0000_0000_1000_0000_0000_0000_0000;
const C = 0x8000_0000_0000_0000_0000_0000_0000_0000;
const ABC = Self::A.bits | Self::B.bits | Self::C.bits;
}
}
assert_eq!(Flags128::ABC, Flags128::A | Flags128::B | Flags128::C);
assert_eq!(Flags128::A.bits, 0x0000_0000_0000_0000_0000_0000_0000_0001);
assert_eq!(Flags128::B.bits, 0x0000_0000_0000_1000_0000_0000_0000_0000);
assert_eq!(Flags128::C.bits, 0x8000_0000_0000_0000_0000_0000_0000_0000);
assert_eq!(
Flags128::ABC.bits,
0x8000_0000_0000_1000_0000_0000_0000_0001
);
assert_eq!(format!("{:?}", Flags128::A), "A");
assert_eq!(format!("{:?}", Flags128::B), "B");
assert_eq!(format!("{:?}", Flags128::C), "C");
assert_eq!(format!("{:?}", Flags128::ABC), "A | B | C | ABC");
}
#[test]
fn test_serde_bitflags_serialize() {
let flags = SerdeFlags::A | SerdeFlags::B;
let serialized = serde_json::to_string(&flags).unwrap();
assert_eq!(serialized, r#"{"bits":3}"#);
}
#[test]
fn test_serde_bitflags_deserialize() {
let deserialized: SerdeFlags = serde_json::from_str(r#"{"bits":12}"#).unwrap();
let expected = SerdeFlags::C | SerdeFlags::D;
assert_eq!(deserialized.bits, expected.bits);
}
#[test]
fn test_serde_bitflags_roundtrip() {
let flags = SerdeFlags::A | SerdeFlags::B;
let deserialized: SerdeFlags = serde_json::from_str(&serde_json::to_string(&flags).unwrap()).unwrap();
assert_eq!(deserialized.bits, flags.bits);
}
bitflags! {
#[derive(serde::Serialize, serde::Deserialize)]
struct SerdeFlags: u32 {
const A = 1;
const B = 2;
const C = 4;
const D = 8;
}
}
}