use core::{
fmt,
ops::{BitAnd, BitOr, BitXor, Not},
};
use crate::{
iter,
parser::{ParseError, ParseHex, WriteHex},
};
/**
A defined flags value that may be named or unnamed.
*/
#[derive(Debug)]
pub struct Flag<B> {
name: &'static str,
value: B,
}
impl<B> Flag<B> {
/**
Define a flag.
If `name` is non-empty then the flag is named, otherwise it's unnamed.
*/
pub const fn new(name: &'static str, value: B) -> Self {
Flag { name, value }
}
/**
Get the name of this flag.
If the flag is unnamed then the returned string will be empty.
*/
pub const fn name(&self) -> &'static str {
self.name
}
/**
Get the flags value of this flag.
*/
pub const fn value(&self) -> &B {
&self.value
}
/**
Whether the flag is named.
If [`Flag::name`] returns a non-empty string then this method will return `true`.
*/
pub const fn is_named(&self) -> bool {
!self.name.is_empty()
}
/**
Whether the flag is unnamed.
If [`Flag::name`] returns a non-empty string then this method will return `false`.
*/
pub const fn is_unnamed(&self) -> bool {
self.name.is_empty()
}
}
/**
A set of defined flags using a bits type as storage.
## Implementing `Flags`
This trait is implemented by the [`bitflags`](macro.bitflags.html) macro:
```
use bitflags::bitflags;
bitflags! {
struct MyFlags: u8 {
const A = 1;
const B = 1 << 1;
}
}
```
It can also be implemented manually:
```
use bitflags::{Flag, Flags};
struct MyFlags(u8);
impl Flags for MyFlags {
const FLAGS: &'static [Flag<Self>] = &[
Flag::new("A", MyFlags(1)),
Flag::new("B", MyFlags(1 << 1)),
];
type Bits = u8;
fn from_bits_retain(bits: Self::Bits) -> Self {
MyFlags(bits)
}
fn bits(&self) -> Self::Bits {
self.0
}
}
```
## Using `Flags`
The `Flags` trait can be used generically to work with any flags types. In this example,
we can count the number of defined named flags:
```
# use bitflags::{bitflags, Flags};
fn defined_flags<F: Flags>() -> usize {
F::FLAGS.iter().filter(|f| f.is_named()).count()
}
bitflags! {
struct MyFlags: u8 {
const A = 1;
const B = 1 << 1;
const C = 1 << 2;
const _ = !0;
}
}
assert_eq!(3, defined_flags::<MyFlags>());
```
*/
pub trait Flags: Sized + 'static {
/// The set of defined flags.
const FLAGS: &'static [Flag<Self>];
/// The underlying bits type.
type Bits: Bits;
/// Get a flags value with all bits unset.
fn empty() -> Self {
Self::from_bits_retain(Self::Bits::EMPTY)
}
/// Get a flags value with all known bits set.
fn all() -> Self {
let mut truncated = Self::Bits::EMPTY;
for flag in Self::FLAGS.iter() {
truncated = truncated | flag.value().bits();
}
Self::from_bits_retain(truncated)
}
/// Get the underlying bits value.
///
/// The returned value is exactly the bits set in this flags value.
fn bits(&self) -> Self::Bits;
/// Convert from a bits value.
///
/// This method will return `None` if any unknown bits are set.
fn from_bits(bits: Self::Bits) -> Option<Self> {
let truncated = Self::from_bits_truncate(bits);
if truncated.bits() == bits {
Some(truncated)
} else {
None
}
}
/// Convert from a bits value, unsetting any unknown bits.
fn from_bits_truncate(bits: Self::Bits) -> Self {
Self::from_bits_retain(bits & Self::all().bits())
}
/// Convert from a bits value exactly.
fn from_bits_retain(bits: Self::Bits) -> Self;
/// Get a flags value with the bits of a flag with the given name set.
///
/// This method will return `None` if `name` is empty or doesn't
/// correspond to any named flag.
fn from_name(name: &str) -> Option<Self> {
// Don't parse empty names as empty flags
if name.is_empty() {
return None;
}
for flag in Self::FLAGS {
if flag.name() == name {
return Some(Self::from_bits_retain(flag.value().bits()));
}
}
None
}
/// Yield a set of contained flags values.
///
/// Each yielded flags value will correspond to a defined named flag. Any unknown bits
/// will be yielded together as a final flags value.
fn iter(&self) -> iter::Iter<Self> {
iter::Iter::new(self)
}
/// Yield a set of contained named flags values.
///
/// This method is like [`Flags::iter`], except only yields bits in contained named flags.
/// Any unknown bits, or bits not corresponding to a contained flag will not be yielded.
fn iter_names(&self) -> iter::IterNames<Self> {
iter::IterNames::new(self)
}
/// Whether all bits in this flags value are unset.
fn is_empty(&self) -> bool {
self.bits() == Self::Bits::EMPTY
}
/// Whether all known bits in this flags value are set.
fn is_all(&self) -> bool {
// NOTE: We check against `Self::all` here, not `Self::Bits::ALL`
// because the set of all flags may not use all bits
Self::all().bits() | self.bits() == self.bits()
}
/// Whether any set bits in a source flags value are also set in a target flags value.
fn intersects(&self, other: Self) -> bool
where
Self: Sized,
{
self.bits() & other.bits() != Self::Bits::EMPTY
}
/// Whether all set bits in a source flags value are also set in a target flags value.
fn contains(&self, other: Self) -> bool
where
Self: Sized,
{
self.bits() & other.bits() == other.bits()
}
/// The bitwise or (`|`) of the bits in two flags values.
fn insert(&mut self, other: Self)
where
Self: Sized,
{
*self = Self::from_bits_retain(self.bits()).union(other);
}
/// The intersection of a source flags value with the complement of a target flags value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `remove` won't truncate `other`, but the `!` operator will.
fn remove(&mut self, other: Self)
where
Self: Sized,
{
*self = Self::from_bits_retain(self.bits()).difference(other);
}
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
fn toggle(&mut self, other: Self)
where
Self: Sized,
{
*self = Self::from_bits_retain(self.bits()).symmetric_difference(other);
}
/// Call [`Flags::insert`] when `value` is `true` or [`Flags::remove`] when `value` is `false`.
fn set(&mut self, other: Self, value: bool)
where
Self: Sized,
{
if value {
self.insert(other);
} else {
self.remove(other);
}
}
/// The bitwise and (`&`) of the bits in two flags values.
#[must_use]
fn intersection(self, other: Self) -> Self {
Self::from_bits_retain(self.bits() & other.bits())
}
/// The bitwise or (`|`) of the bits in two flags values.
#[must_use]
fn union(self, other: Self) -> Self {
Self::from_bits_retain(self.bits() | other.bits())
}
/// The intersection of a source flags value with the complement of a target flags value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `difference` won't truncate `other`, but the `!` operator will.
#[must_use]
fn difference(self, other: Self) -> Self {
Self::from_bits_retain(self.bits() & !other.bits())
}
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
#[must_use]
fn symmetric_difference(self, other: Self) -> Self {
Self::from_bits_retain(self.bits() ^ other.bits())
}
/// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
#[must_use]
fn complement(self) -> Self {
Self::from_bits_truncate(!self.bits())
}
}
/**
A bits type that can be used as storage for a flags type.
*/
pub trait Bits:
Clone
+ Copy
+ PartialEq
+ BitAnd<Output = Self>
+ BitOr<Output = Self>
+ BitXor<Output = Self>
+ Not<Output = Self>
+ Sized
+ 'static
{
/// A value with all bits unset.
const EMPTY: Self;
/// A value with all bits set.
const ALL: Self;
}
// Not re-exported: prevent custom `Bits` impls being used in the `bitflags!` macro,
// or they may fail to compile based on crate features
pub trait Primitive {}
macro_rules! impl_bits {
($($u:ty, $i:ty,)*) => {
$(
impl Bits for $u {
const EMPTY: $u = 0;
const ALL: $u = <$u>::MAX;
}
impl Bits for $i {
const EMPTY: $i = 0;
const ALL: $i = <$u>::MAX as $i;
}
impl ParseHex for $u {
fn parse_hex(input: &str) -> Result<Self, ParseError> {
<$u>::from_str_radix(input, 16).map_err(|_| ParseError::invalid_hex_flag(input))
}
}
impl ParseHex for $i {
fn parse_hex(input: &str) -> Result<Self, ParseError> {
<$i>::from_str_radix(input, 16).map_err(|_| ParseError::invalid_hex_flag(input))
}
}
impl WriteHex for $u {
fn write_hex<W: fmt::Write>(&self, mut writer: W) -> fmt::Result {
write!(writer, "{:x}", self)
}
}
impl WriteHex for $i {
fn write_hex<W: fmt::Write>(&self, mut writer: W) -> fmt::Result {
write!(writer, "{:x}", self)
}
}
impl Primitive for $i {}
impl Primitive for $u {}
)*
}
}
impl_bits! {
u8, i8,
u16, i16,
u32, i32,
u64, i64,
u128, i128,
usize, isize,
}
/// A trait for referencing the `bitflags`-owned internal type
/// without exposing it publicly.
pub trait PublicFlags {
/// The type of the underlying storage.
type Primitive: Primitive;
/// The type of the internal field on the generated flags type.
type Internal;
}
#[doc(hidden)]
#[deprecated(note = "use the `Flags` trait instead")]
pub trait BitFlags: ImplementedByBitFlagsMacro + Flags {
/// An iterator over enabled flags in an instance of the type.
type Iter: Iterator<Item = Self>;
/// An iterator over the raw names and bits for enabled flags in an instance of the type.
type IterNames: Iterator<Item = (&'static str, Self)>;
}
#[allow(deprecated)]
impl<B: Flags> BitFlags for B {
type Iter = iter::Iter<Self>;
type IterNames = iter::IterNames<Self>;
}
impl<B: Flags> ImplementedByBitFlagsMacro for B {}
/// A marker trait that signals that an implementation of `BitFlags` came from the `bitflags!` macro.
///
/// There's nothing stopping an end-user from implementing this trait, but we don't guarantee their
/// manual implementations won't break between non-breaking releases.
#[doc(hidden)]
pub trait ImplementedByBitFlagsMacro {}
pub(crate) mod __private {
pub use super::{ImplementedByBitFlagsMacro, PublicFlags};
}