//! Fast, SIMD-accelerated CRC32 (IEEE) checksum computation.
//!
//! ## Usage
//!
//! ### Simple usage
//!
//! For simple use-cases, you can call the [`hash()`] convenience function to
//! directly compute the CRC32 checksum for a given byte slice:
//!
//! ```rust
//! let checksum = crc32fast::hash(b"foo bar baz");
//! ```
//!
//! ### Advanced usage
//!
//! For use-cases that require more flexibility or performance, for example when
//! processing large amounts of data, you can create and manipulate a [`Hasher`]:
//!
//! ```rust
//! use crc32fast::Hasher;
//!
//! let mut hasher = Hasher::new();
//! hasher.update(b"foo bar baz");
//! let checksum = hasher.finalize();
//! ```
//!
//! ## Performance
//!
//! This crate contains multiple CRC32 implementations:
//!
//! - A fast baseline implementation which processes up to 16 bytes per iteration
//! - An optimized implementation for modern `x86` using `sse` and `pclmulqdq` instructions
//!
//! Calling the [`Hasher::new`] constructor at runtime will perform a feature detection to select the most
//! optimal implementation for the current CPU feature set.
#![cfg_attr(not(feature = "std"), no_std)]
#[deny(missing_docs)]
#[cfg(test)]
#[macro_use]
extern crate quickcheck;
#[macro_use]
extern crate cfg_if;
#[cfg(feature = "std")]
use std as core;
use core::fmt;
use core::hash;
mod baseline;
mod combine;
mod specialized;
mod table;
/// Computes the CRC32 hash of a byte slice.
///
/// Check out [`Hasher`] for more advanced use-cases.
pub fn hash(buf: &[u8]) -> u32 {
let mut h = Hasher::new();
h.update(buf);
h.finalize()
}
#[derive(Clone)]
enum State {
Baseline(baseline::State),
Specialized(specialized::State),
}
#[derive(Clone)]
/// Represents an in-progress CRC32 computation.
pub struct Hasher {
amount: u64,
state: State,
}
const DEFAULT_INIT_STATE: u32 = 0;
impl Hasher {
/// Create a new `Hasher`.
///
/// This will perform a CPU feature detection at runtime to select the most
/// optimal implementation for the current processor architecture.
pub fn new() -> Self {
Self::new_with_initial(DEFAULT_INIT_STATE)
}
/// Create a new `Hasher` with an initial CRC32 state.
///
/// This works just like `Hasher::new`, except that it allows for an initial
/// CRC32 state to be passed in.
pub fn new_with_initial(init: u32) -> Self {
Self::new_with_initial_len(init, 0)
}
/// Create a new `Hasher` with an initial CRC32 state.
///
/// As `new_with_initial`, but also accepts a length (in bytes). The
/// resulting object can then be used with `combine` to compute `crc(a ||
/// b)` from `crc(a)`, `crc(b)`, and `len(b)`.
pub fn new_with_initial_len(init: u32, amount: u64) -> Self {
Self::internal_new_specialized(init, amount)
.unwrap_or_else(|| Self::internal_new_baseline(init, amount))
}
#[doc(hidden)]
// Internal-only API. Don't use.
pub fn internal_new_baseline(init: u32, amount: u64) -> Self {
Hasher {
amount,
state: State::Baseline(baseline::State::new(init)),
}
}
#[doc(hidden)]
// Internal-only API. Don't use.
pub fn internal_new_specialized(init: u32, amount: u64) -> Option<Self> {
{
if let Some(state) = specialized::State::new(init) {
return Some(Hasher {
amount,
state: State::Specialized(state),
});
}
}
None
}
/// Process the given byte slice and update the hash state.
pub fn update(&mut self, buf: &[u8]) {
self.amount += buf.len() as u64;
match self.state {
State::Baseline(ref mut state) => state.update(buf),
State::Specialized(ref mut state) => state.update(buf),
}
}
/// Finalize the hash state and return the computed CRC32 value.
pub fn finalize(self) -> u32 {
match self.state {
State::Baseline(state) => state.finalize(),
State::Specialized(state) => state.finalize(),
}
}
/// Reset the hash state.
pub fn reset(&mut self) {
self.amount = 0;
match self.state {
State::Baseline(ref mut state) => state.reset(),
State::Specialized(ref mut state) => state.reset(),
}
}
/// Combine the hash state with the hash state for the subsequent block of bytes.
pub fn combine(&mut self, other: &Self) {
self.amount += other.amount;
let other_crc = other.clone().finalize();
match self.state {
State::Baseline(ref mut state) => state.combine(other_crc, other.amount),
State::Specialized(ref mut state) => state.combine(other_crc, other.amount),
}
}
}
impl fmt::Debug for Hasher {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("crc32fast::Hasher").finish()
}
}
impl Default for Hasher {
fn default() -> Self {
Self::new()
}
}
impl hash::Hasher for Hasher {
fn write(&mut self, bytes: &[u8]) {
self.update(bytes)
}
fn finish(&self) -> u64 {
u64::from(self.clone().finalize())
}
}
#[cfg(test)]
mod test {
use super::Hasher;
quickcheck! {
fn combine(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool {
let mut hash_a = Hasher::new();
hash_a.update(&bytes_1);
hash_a.update(&bytes_2);
let mut hash_b = Hasher::new();
hash_b.update(&bytes_2);
let mut hash_c = Hasher::new();
hash_c.update(&bytes_1);
hash_c.combine(&hash_b);
hash_a.finalize() == hash_c.finalize()
}
fn combine_from_len(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool {
let mut hash_a = Hasher::new();
hash_a.update(&bytes_1);
let a = hash_a.finalize();
let mut hash_b = Hasher::new();
hash_b.update(&bytes_2);
let b = hash_b.finalize();
let mut hash_ab = Hasher::new();
hash_ab.update(&bytes_1);
hash_ab.update(&bytes_2);
let ab = hash_ab.finalize();
let mut reconstructed = Hasher::new_with_initial_len(a, bytes_1.len() as u64);
let hash_b_reconstructed = Hasher::new_with_initial_len(b, bytes_2.len() as u64);
reconstructed.combine(&hash_b_reconstructed);
reconstructed.finalize() == ab
}
}
}