//! Less used details of `CxxVector` are exposed in this module. `CxxVector`
//! itself is exposed at the crate root.
use crate::extern_type::ExternType;
use crate::kind::Trivial;
use crate::string::CxxString;
use crate::unique_ptr::UniquePtr;
use core::ffi::c_void;
use core::fmt::{self, Debug};
use core::iter::FusedIterator;
use core::marker::{PhantomData, PhantomPinned};
use core::mem::{self, ManuallyDrop, MaybeUninit};
use core::pin::Pin;
use core::slice;
/// Binding to C++ `std::vector<T, std::allocator<T>>`.
///
/// # Invariants
///
/// As an invariant of this API and the static analysis of the cxx::bridge
/// macro, in Rust code we can never obtain a `CxxVector` by value. Instead in
/// Rust code we will only ever look at a vector behind a reference or smart
/// pointer, as in `&CxxVector<T>` or `UniquePtr<CxxVector<T>>`.
#[repr(C, packed)]
pub struct CxxVector<T> {
// A thing, because repr(C) structs are not allowed to consist exclusively
// of PhantomData fields.
_void: [c_void; 0],
// The conceptual vector elements to ensure that autotraits are propagated
// correctly, e.g. CxxVector is UnwindSafe iff T is.
_elements: PhantomData<[T]>,
// Prevent unpin operation from Pin<&mut CxxVector<T>> to &mut CxxVector<T>.
_pinned: PhantomData<PhantomPinned>,
}
impl<T> CxxVector<T>
where
T: VectorElement,
{
/// Constructs a new heap allocated vector, wrapped by UniquePtr.
///
/// The C++ vector is default constructed.
pub fn new() -> UniquePtr<Self> {
unsafe { UniquePtr::from_raw(T::__vector_new()) }
}
/// Returns the number of elements in the vector.
///
/// Matches the behavior of C++ [std::vector\<T\>::size][size].
///
/// [size]: https://en.cppreference.com/w/cpp/container/vector/size
pub fn len(&self) -> usize {
T::__vector_size(self)
}
/// Returns true if the vector contains no elements.
///
/// Matches the behavior of C++ [std::vector\<T\>::empty][empty].
///
/// [empty]: https://en.cppreference.com/w/cpp/container/vector/empty
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns a reference to an element at the given position, or `None` if
/// out of bounds.
pub fn get(&self, pos: usize) -> Option<&T> {
if pos < self.len() {
Some(unsafe { self.get_unchecked(pos) })
} else {
None
}
}
/// Returns a pinned mutable reference to an element at the given position,
/// or `None` if out of bounds.
pub fn index_mut(self: Pin<&mut Self>, pos: usize) -> Option<Pin<&mut T>> {
if pos < self.len() {
Some(unsafe { self.index_unchecked_mut(pos) })
} else {
None
}
}
/// Returns a reference to an element without doing bounds checking.
///
/// This is generally not recommended, use with caution! Calling this method
/// with an out-of-bounds index is undefined behavior even if the resulting
/// reference is not used.
///
/// Matches the behavior of C++
/// [std::vector\<T\>::operator\[\] const][operator_at].
///
/// [operator_at]: https://en.cppreference.com/w/cpp/container/vector/operator_at
pub unsafe fn get_unchecked(&self, pos: usize) -> &T {
let this = self as *const CxxVector<T> as *mut CxxVector<T>;
unsafe {
let ptr = T::__get_unchecked(this, pos) as *const T;
&*ptr
}
}
/// Returns a pinned mutable reference to an element without doing bounds
/// checking.
///
/// This is generally not recommended, use with caution! Calling this method
/// with an out-of-bounds index is undefined behavior even if the resulting
/// reference is not used.
///
/// Matches the behavior of C++
/// [std::vector\<T\>::operator\[\]][operator_at].
///
/// [operator_at]: https://en.cppreference.com/w/cpp/container/vector/operator_at
pub unsafe fn index_unchecked_mut(self: Pin<&mut Self>, pos: usize) -> Pin<&mut T> {
unsafe {
let ptr = T::__get_unchecked(self.get_unchecked_mut(), pos);
Pin::new_unchecked(&mut *ptr)
}
}
/// Returns a slice to the underlying contiguous array of elements.
pub fn as_slice(&self) -> &[T]
where
T: ExternType<Kind = Trivial>,
{
let len = self.len();
if len == 0 {
// The slice::from_raw_parts in the other branch requires a nonnull
// and properly aligned data ptr. C++ standard does not guarantee
// that data() on a vector with size 0 would return a nonnull
// pointer or sufficiently aligned pointer, so using it would be
// undefined behavior. Create our own empty slice in Rust instead
// which upholds the invariants.
&[]
} else {
let this = self as *const CxxVector<T> as *mut CxxVector<T>;
let ptr = unsafe { T::__get_unchecked(this, 0) };
unsafe { slice::from_raw_parts(ptr, len) }
}
}
/// Returns a slice to the underlying contiguous array of elements by
/// mutable reference.
pub fn as_mut_slice(self: Pin<&mut Self>) -> &mut [T]
where
T: ExternType<Kind = Trivial>,
{
let len = self.len();
if len == 0 {
&mut []
} else {
let ptr = unsafe { T::__get_unchecked(self.get_unchecked_mut(), 0) };
unsafe { slice::from_raw_parts_mut(ptr, len) }
}
}
/// Returns an iterator over elements of type `&T`.
pub fn iter(&self) -> Iter<T> {
Iter { v: self, index: 0 }
}
/// Returns an iterator over elements of type `Pin<&mut T>`.
pub fn iter_mut(self: Pin<&mut Self>) -> IterMut<T> {
IterMut { v: self, index: 0 }
}
/// Appends an element to the back of the vector.
///
/// Matches the behavior of C++ [std::vector\<T\>::push_back][push_back].
///
/// [push_back]: https://en.cppreference.com/w/cpp/container/vector/push_back
pub fn push(self: Pin<&mut Self>, value: T)
where
T: ExternType<Kind = Trivial>,
{
let mut value = ManuallyDrop::new(value);
unsafe {
// C++ calls move constructor followed by destructor on `value`.
T::__push_back(self, &mut value);
}
}
/// Removes the last element from a vector and returns it, or `None` if the
/// vector is empty.
pub fn pop(self: Pin<&mut Self>) -> Option<T>
where
T: ExternType<Kind = Trivial>,
{
if self.is_empty() {
None
} else {
let mut value = MaybeUninit::uninit();
Some(unsafe {
T::__pop_back(self, &mut value);
value.assume_init()
})
}
}
}
/// Iterator over elements of a `CxxVector` by shared reference.
///
/// The iterator element type is `&'a T`.
pub struct Iter<'a, T> {
v: &'a CxxVector<T>,
index: usize,
}
impl<'a, T> IntoIterator for &'a CxxVector<T>
where
T: VectorElement,
{
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, T> Iterator for Iter<'a, T>
where
T: VectorElement,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
let next = self.v.get(self.index)?;
self.index += 1;
Some(next)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<'a, T> ExactSizeIterator for Iter<'a, T>
where
T: VectorElement,
{
fn len(&self) -> usize {
self.v.len() - self.index
}
}
impl<'a, T> FusedIterator for Iter<'a, T> where T: VectorElement {}
/// Iterator over elements of a `CxxVector` by pinned mutable reference.
///
/// The iterator element type is `Pin<&'a mut T>`.
pub struct IterMut<'a, T> {
v: Pin<&'a mut CxxVector<T>>,
index: usize,
}
impl<'a, T> IntoIterator for Pin<&'a mut CxxVector<T>>
where
T: VectorElement,
{
type Item = Pin<&'a mut T>;
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<'a, T> Iterator for IterMut<'a, T>
where
T: VectorElement,
{
type Item = Pin<&'a mut T>;
fn next(&mut self) -> Option<Self::Item> {
let next = self.v.as_mut().index_mut(self.index)?;
self.index += 1;
// Extend lifetime to allow simultaneous holding of nonoverlapping
// elements, analogous to slice::split_first_mut.
unsafe {
let ptr = Pin::into_inner_unchecked(next) as *mut T;
Some(Pin::new_unchecked(&mut *ptr))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<'a, T> ExactSizeIterator for IterMut<'a, T>
where
T: VectorElement,
{
fn len(&self) -> usize {
self.v.len() - self.index
}
}
impl<'a, T> FusedIterator for IterMut<'a, T> where T: VectorElement {}
impl<T> Debug for CxxVector<T>
where
T: VectorElement + Debug,
{
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.debug_list().entries(self).finish()
}
}
/// Trait bound for types which may be used as the `T` inside of a
/// `CxxVector<T>` in generic code.
///
/// This trait has no publicly callable or implementable methods. Implementing
/// it outside of the CXX codebase requires using [explicit shim trait impls],
/// adding the line `impl CxxVector<MyType> {}` in the same `cxx::bridge` that
/// defines `MyType`.
///
/// # Example
///
/// A bound `T: VectorElement` may be necessary when manipulating [`CxxVector`]
/// in generic code.
///
/// ```
/// use cxx::vector::{CxxVector, VectorElement};
/// use std::fmt::Display;
///
/// pub fn take_generic_vector<T>(vector: &CxxVector<T>)
/// where
/// T: VectorElement + Display,
/// {
/// println!("the vector elements are:");
/// for element in vector {
/// println!(" • {}", element);
/// }
/// }
/// ```
///
/// Writing the same generic function without a `VectorElement` trait bound
/// would not compile.
///
/// [explicit shim trait impls]: https://cxx.rs/extern-c++.html#explicit-shim-trait-impls
pub unsafe trait VectorElement: Sized {
#[doc(hidden)]
fn __typename(f: &mut fmt::Formatter) -> fmt::Result;
#[doc(hidden)]
fn __vector_new() -> *mut CxxVector<Self>;
#[doc(hidden)]
fn __vector_size(v: &CxxVector<Self>) -> usize;
#[doc(hidden)]
unsafe fn __get_unchecked(v: *mut CxxVector<Self>, pos: usize) -> *mut Self;
#[doc(hidden)]
unsafe fn __push_back(v: Pin<&mut CxxVector<Self>>, value: &mut ManuallyDrop<Self>) {
// Opaque C type vector elements do not get this method because they can
// never exist by value on the Rust side of the bridge.
let _ = v;
let _ = value;
unreachable!()
}
#[doc(hidden)]
unsafe fn __pop_back(v: Pin<&mut CxxVector<Self>>, out: &mut MaybeUninit<Self>) {
// Opaque C type vector elements do not get this method because they can
// never exist by value on the Rust side of the bridge.
let _ = v;
let _ = out;
unreachable!()
}
#[doc(hidden)]
fn __unique_ptr_null() -> MaybeUninit<*mut c_void>;
#[doc(hidden)]
unsafe fn __unique_ptr_raw(raw: *mut CxxVector<Self>) -> MaybeUninit<*mut c_void>;
#[doc(hidden)]
unsafe fn __unique_ptr_get(repr: MaybeUninit<*mut c_void>) -> *const CxxVector<Self>;
#[doc(hidden)]
unsafe fn __unique_ptr_release(repr: MaybeUninit<*mut c_void>) -> *mut CxxVector<Self>;
#[doc(hidden)]
unsafe fn __unique_ptr_drop(repr: MaybeUninit<*mut c_void>);
}
macro_rules! vector_element_by_value_methods {
(opaque, $segment:expr, $ty:ty) => {};
(trivial, $segment:expr, $ty:ty) => {
unsafe fn __push_back(v: Pin<&mut CxxVector<$ty>>, value: &mut ManuallyDrop<$ty>) {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$push_back")]
fn __push_back(_: Pin<&mut CxxVector<$ty>>, _: &mut ManuallyDrop<$ty>);
}
unsafe { __push_back(v, value) }
}
unsafe fn __pop_back(v: Pin<&mut CxxVector<$ty>>, out: &mut MaybeUninit<$ty>) {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$pop_back")]
fn __pop_back(_: Pin<&mut CxxVector<$ty>>, _: &mut MaybeUninit<$ty>);
}
unsafe { __pop_back(v, out) }
}
};
}
macro_rules! impl_vector_element {
($kind:ident, $segment:expr, $name:expr, $ty:ty) => {
const_assert_eq!(0, mem::size_of::<CxxVector<$ty>>());
const_assert_eq!(1, mem::align_of::<CxxVector<$ty>>());
unsafe impl VectorElement for $ty {
fn __typename(f: &mut fmt::Formatter) -> fmt::Result {
f.write_str($name)
}
fn __vector_new() -> *mut CxxVector<Self> {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$new")]
fn __vector_new() -> *mut CxxVector<$ty>;
}
unsafe { __vector_new() }
}
fn __vector_size(v: &CxxVector<$ty>) -> usize {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$size")]
fn __vector_size(_: &CxxVector<$ty>) -> usize;
}
unsafe { __vector_size(v) }
}
unsafe fn __get_unchecked(v: *mut CxxVector<$ty>, pos: usize) -> *mut $ty {
extern "C" {
#[link_name = concat!("cxxbridge1$std$vector$", $segment, "$get_unchecked")]
fn __get_unchecked(_: *mut CxxVector<$ty>, _: usize) -> *mut $ty;
}
unsafe { __get_unchecked(v, pos) }
}
vector_element_by_value_methods!($kind, $segment, $ty);
fn __unique_ptr_null() -> MaybeUninit<*mut c_void> {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$null")]
fn __unique_ptr_null(this: *mut MaybeUninit<*mut c_void>);
}
let mut repr = MaybeUninit::uninit();
unsafe { __unique_ptr_null(&mut repr) }
repr
}
unsafe fn __unique_ptr_raw(raw: *mut CxxVector<Self>) -> MaybeUninit<*mut c_void> {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$raw")]
fn __unique_ptr_raw(this: *mut MaybeUninit<*mut c_void>, raw: *mut CxxVector<$ty>);
}
let mut repr = MaybeUninit::uninit();
unsafe { __unique_ptr_raw(&mut repr, raw) }
repr
}
unsafe fn __unique_ptr_get(repr: MaybeUninit<*mut c_void>) -> *const CxxVector<Self> {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$get")]
fn __unique_ptr_get(this: *const MaybeUninit<*mut c_void>) -> *const CxxVector<$ty>;
}
unsafe { __unique_ptr_get(&repr) }
}
unsafe fn __unique_ptr_release(mut repr: MaybeUninit<*mut c_void>) -> *mut CxxVector<Self> {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$release")]
fn __unique_ptr_release(this: *mut MaybeUninit<*mut c_void>) -> *mut CxxVector<$ty>;
}
unsafe { __unique_ptr_release(&mut repr) }
}
unsafe fn __unique_ptr_drop(mut repr: MaybeUninit<*mut c_void>) {
extern "C" {
#[link_name = concat!("cxxbridge1$unique_ptr$std$vector$", $segment, "$drop")]
fn __unique_ptr_drop(this: *mut MaybeUninit<*mut c_void>);
}
unsafe { __unique_ptr_drop(&mut repr) }
}
}
};
}
macro_rules! impl_vector_element_for_primitive {
($ty:ident) => {
impl_vector_element!(trivial, stringify!($ty), stringify!($ty), $ty);
};
}
impl_vector_element_for_primitive!(u8);
impl_vector_element_for_primitive!(u16);
impl_vector_element_for_primitive!(u32);
impl_vector_element_for_primitive!(u64);
impl_vector_element_for_primitive!(usize);
impl_vector_element_for_primitive!(i8);
impl_vector_element_for_primitive!(i16);
impl_vector_element_for_primitive!(i32);
impl_vector_element_for_primitive!(i64);
impl_vector_element_for_primitive!(isize);
impl_vector_element_for_primitive!(f32);
impl_vector_element_for_primitive!(f64);
impl_vector_element!(opaque, "string", "CxxString", CxxString);