use crate::gen::block::Block;
use crate::gen::nested::NamespaceEntries;
use crate::gen::out::OutFile;
use crate::gen::{builtin, include, Opt};
use crate::syntax::atom::Atom::{self, *};
use crate::syntax::instantiate::{ImplKey, NamedImplKey};
use crate::syntax::map::UnorderedMap as Map;
use crate::syntax::set::UnorderedSet;
use crate::syntax::symbol::{self, Symbol};
use crate::syntax::trivial::{self, TrivialReason};
use crate::syntax::{
derive, mangle, Api, Doc, Enum, EnumRepr, ExternFn, ExternType, Pair, Signature, Struct, Trait,
Type, TypeAlias, Types, Var,
};
use proc_macro2::Ident;
pub(super) fn gen(apis: &[Api], types: &Types, opt: &Opt, header: bool) -> Vec<u8> {
let mut out_file = OutFile::new(header, opt, types);
let out = &mut out_file;
pick_includes_and_builtins(out, apis);
out.include.extend(&opt.include);
write_forward_declarations(out, apis);
write_data_structures(out, apis);
write_functions(out, apis);
write_generic_instantiations(out);
builtin::write(out);
include::write(out);
out_file.content()
}
fn write_forward_declarations(out: &mut OutFile, apis: &[Api]) {
let needs_forward_declaration = |api: &&Api| match api {
Api::Struct(_) | Api::CxxType(_) | Api::RustType(_) => true,
Api::Enum(enm) => !out.types.cxx.contains(&enm.name.rust),
_ => false,
};
let apis_by_namespace =
NamespaceEntries::new(apis.iter().filter(needs_forward_declaration).collect());
write(out, &apis_by_namespace, 0);
fn write(out: &mut OutFile, ns_entries: &NamespaceEntries, indent: usize) {
let apis = ns_entries.direct_content();
for api in apis {
write!(out, "{:1$}", "", indent);
match api {
Api::Struct(strct) => write_struct_decl(out, &strct.name),
Api::Enum(enm) => write_enum_decl(out, enm),
Api::CxxType(ety) => write_struct_using(out, &ety.name),
Api::RustType(ety) => write_struct_decl(out, &ety.name),
_ => unreachable!(),
}
}
for (namespace, nested_ns_entries) in ns_entries.nested_content() {
writeln!(out, "{:2$}namespace {} {{", "", namespace, indent);
write(out, nested_ns_entries, indent + 2);
writeln!(out, "{:1$}}}", "", indent);
}
}
}
fn write_data_structures<'a>(out: &mut OutFile<'a>, apis: &'a [Api]) {
let mut methods_for_type = Map::new();
for api in apis {
if let Api::CxxFunction(efn) | Api::RustFunction(efn) = api {
if let Some(receiver) = &efn.sig.receiver {
methods_for_type
.entry(&receiver.ty.rust)
.or_insert_with(Vec::new)
.push(efn);
}
}
}
let mut structs_written = UnorderedSet::new();
let mut toposorted_structs = out.types.toposorted_structs.iter();
for api in apis {
match api {
Api::Struct(strct) if !structs_written.contains(&strct.name.rust) => {
for next in &mut toposorted_structs {
if !out.types.cxx.contains(&next.name.rust) {
out.next_section();
let methods = methods_for_type
.get(&next.name.rust)
.map(Vec::as_slice)
.unwrap_or_default();
write_struct(out, next, methods);
}
structs_written.insert(&next.name.rust);
if next.name.rust == strct.name.rust {
break;
}
}
}
Api::Enum(enm) => {
out.next_section();
if !out.types.cxx.contains(&enm.name.rust) {
write_enum(out, enm);
} else if !enm.variants_from_header {
check_enum(out, enm);
}
}
Api::RustType(ety) => {
out.next_section();
let methods = methods_for_type
.get(&ety.name.rust)
.map(Vec::as_slice)
.unwrap_or_default();
write_opaque_type(out, ety, methods);
}
_ => {}
}
}
if out.header {
return;
}
out.set_namespace(Default::default());
out.next_section();
for api in apis {
if let Api::TypeAlias(ety) = api {
if let Some(reasons) = out.types.required_trivial.get(&ety.name.rust) {
check_trivial_extern_type(out, ety, reasons);
}
}
}
}
fn write_functions<'a>(out: &mut OutFile<'a>, apis: &'a [Api]) {
if !out.header {
for api in apis {
match api {
Api::Struct(strct) => write_struct_operator_decls(out, strct),
Api::RustType(ety) => write_opaque_type_layout_decls(out, ety),
Api::CxxFunction(efn) => write_cxx_function_shim(out, efn),
Api::RustFunction(efn) => write_rust_function_decl(out, efn),
_ => {}
}
}
write_std_specializations(out, apis);
}
for api in apis {
match api {
Api::Struct(strct) => write_struct_operators(out, strct),
Api::RustType(ety) => write_opaque_type_layout(out, ety),
Api::RustFunction(efn) => {
out.next_section();
write_rust_function_shim(out, efn);
}
_ => {}
}
}
}
fn write_std_specializations(out: &mut OutFile, apis: &[Api]) {
out.set_namespace(Default::default());
out.begin_block(Block::Namespace("std"));
for api in apis {
if let Api::Struct(strct) = api {
if derive::contains(&strct.derives, Trait::Hash) {
out.next_section();
out.include.cstddef = true;
out.include.functional = true;
let qualified = strct.name.to_fully_qualified();
writeln!(out, "template <> struct hash<{}> {{", qualified);
writeln!(
out,
" ::std::size_t operator()({} const &self) const noexcept {{",
qualified,
);
let link_name = mangle::operator(&strct.name, "hash");
write!(out, " return ::");
for name in &strct.name.namespace {
write!(out, "{}::", name);
}
writeln!(out, "{}(self);", link_name);
writeln!(out, " }}");
writeln!(out, "}};");
}
}
}
out.end_block(Block::Namespace("std"));
}
fn pick_includes_and_builtins(out: &mut OutFile, apis: &[Api]) {
for api in apis {
if let Api::Include(include) = api {
out.include.insert(include);
}
}
for ty in out.types {
match ty {
Type::Ident(ident) => match Atom::from(&ident.rust) {
Some(U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64) => out.include.cstdint = true,
Some(Usize) => out.include.cstddef = true,
Some(Isize) => out.builtin.rust_isize = true,
Some(CxxString) => out.include.string = true,
Some(RustString) => out.builtin.rust_string = true,
Some(Bool | Char | F32 | F64) | None => {}
},
Type::RustBox(_) => out.builtin.rust_box = true,
Type::RustVec(_) => out.builtin.rust_vec = true,
Type::UniquePtr(_) => out.include.memory = true,
Type::SharedPtr(_) | Type::WeakPtr(_) => out.include.memory = true,
Type::Str(_) => out.builtin.rust_str = true,
Type::CxxVector(_) => out.include.vector = true,
Type::Fn(_) => out.builtin.rust_fn = true,
Type::SliceRef(_) => out.builtin.rust_slice = true,
Type::Array(_) => out.include.array = true,
Type::Ref(_) | Type::Void(_) | Type::Ptr(_) => {}
}
}
}
fn write_doc(out: &mut OutFile, indent: &str, doc: &Doc) {
let mut lines = 0;
for line in doc.to_string().lines() {
if out.opt.doxygen {
writeln!(out, "{}///{}", indent, line);
} else {
writeln!(out, "{}//{}", indent, line);
}
lines += 1;
}
// According to https://www.doxygen.nl/manual/docblocks.html, Doxygen only
// interprets `///` as a Doxygen comment block if there are at least 2 of
// them. In Rust, a single `///` is definitely still documentation so we
// make sure to propagate that as a Doxygen comment.
if out.opt.doxygen && lines == 1 {
writeln!(out, "{}///", indent);
}
}
fn write_struct<'a>(out: &mut OutFile<'a>, strct: &'a Struct, methods: &[&ExternFn]) {
let operator_eq = derive::contains(&strct.derives, Trait::PartialEq);
let operator_ord = derive::contains(&strct.derives, Trait::PartialOrd);
out.set_namespace(&strct.name.namespace);
let guard = format!("CXXBRIDGE1_STRUCT_{}", strct.name.to_symbol());
writeln!(out, "#ifndef {}", guard);
writeln!(out, "#define {}", guard);
write_doc(out, "", &strct.doc);
writeln!(out, "struct {} final {{", strct.name.cxx);
for field in &strct.fields {
write_doc(out, " ", &field.doc);
write!(out, " ");
write_type_space(out, &field.ty);
writeln!(out, "{};", field.name.cxx);
}
out.next_section();
for method in methods {
if !method.doc.is_empty() {
out.next_section();
}
write_doc(out, " ", &method.doc);
write!(out, " ");
let sig = &method.sig;
let local_name = method.name.cxx.to_string();
let indirect_call = false;
write_rust_function_shim_decl(out, &local_name, sig, indirect_call);
writeln!(out, ";");
if !method.doc.is_empty() {
out.next_section();
}
}
if operator_eq {
writeln!(
out,
" bool operator==({} const &) const noexcept;",
strct.name.cxx,
);
writeln!(
out,
" bool operator!=({} const &) const noexcept;",
strct.name.cxx,
);
}
if operator_ord {
writeln!(
out,
" bool operator<({} const &) const noexcept;",
strct.name.cxx,
);
writeln!(
out,
" bool operator<=({} const &) const noexcept;",
strct.name.cxx,
);
writeln!(
out,
" bool operator>({} const &) const noexcept;",
strct.name.cxx,
);
writeln!(
out,
" bool operator>=({} const &) const noexcept;",
strct.name.cxx,
);
}
out.include.type_traits = true;
writeln!(out, " using IsRelocatable = ::std::true_type;");
writeln!(out, "}};");
writeln!(out, "#endif // {}", guard);
}
fn write_struct_decl(out: &mut OutFile, ident: &Pair) {
writeln!(out, "struct {};", ident.cxx);
}
fn write_enum_decl(out: &mut OutFile, enm: &Enum) {
let repr = match &enm.repr {
#[cfg(feature = "experimental-enum-variants-from-header")]
EnumRepr::Foreign { .. } => return,
EnumRepr::Native { atom, .. } => *atom,
};
write!(out, "enum class {} : ", enm.name.cxx);
write_atom(out, repr);
writeln!(out, ";");
}
fn write_struct_using(out: &mut OutFile, ident: &Pair) {
writeln!(out, "using {} = {};", ident.cxx, ident.to_fully_qualified());
}
fn write_opaque_type<'a>(out: &mut OutFile<'a>, ety: &'a ExternType, methods: &[&ExternFn]) {
out.set_namespace(&ety.name.namespace);
let guard = format!("CXXBRIDGE1_STRUCT_{}", ety.name.to_symbol());
writeln!(out, "#ifndef {}", guard);
writeln!(out, "#define {}", guard);
write_doc(out, "", &ety.doc);
out.builtin.opaque = true;
writeln!(
out,
"struct {} final : public ::rust::Opaque {{",
ety.name.cxx,
);
for (i, method) in methods.iter().enumerate() {
if i > 0 && !method.doc.is_empty() {
out.next_section();
}
write_doc(out, " ", &method.doc);
write!(out, " ");
let sig = &method.sig;
let local_name = method.name.cxx.to_string();
let indirect_call = false;
write_rust_function_shim_decl(out, &local_name, sig, indirect_call);
writeln!(out, ";");
if !method.doc.is_empty() {
out.next_section();
}
}
writeln!(out, " ~{}() = delete;", ety.name.cxx);
writeln!(out);
out.builtin.layout = true;
out.include.cstddef = true;
writeln!(out, "private:");
writeln!(out, " friend ::rust::layout;");
writeln!(out, " struct layout {{");
writeln!(out, " static ::std::size_t size() noexcept;");
writeln!(out, " static ::std::size_t align() noexcept;");
writeln!(out, " }};");
writeln!(out, "}};");
writeln!(out, "#endif // {}", guard);
}
fn write_enum<'a>(out: &mut OutFile<'a>, enm: &'a Enum) {
let repr = match &enm.repr {
#[cfg(feature = "experimental-enum-variants-from-header")]
EnumRepr::Foreign { .. } => return,
EnumRepr::Native { atom, .. } => *atom,
};
out.set_namespace(&enm.name.namespace);
let guard = format!("CXXBRIDGE1_ENUM_{}", enm.name.to_symbol());
writeln!(out, "#ifndef {}", guard);
writeln!(out, "#define {}", guard);
write_doc(out, "", &enm.doc);
write!(out, "enum class {} : ", enm.name.cxx);
write_atom(out, repr);
writeln!(out, " {{");
for variant in &enm.variants {
write_doc(out, " ", &variant.doc);
writeln!(out, " {} = {},", variant.name.cxx, variant.discriminant);
}
writeln!(out, "}};");
writeln!(out, "#endif // {}", guard);
}
fn check_enum<'a>(out: &mut OutFile<'a>, enm: &'a Enum) {
let repr = match &enm.repr {
#[cfg(feature = "experimental-enum-variants-from-header")]
EnumRepr::Foreign { .. } => return,
EnumRepr::Native { atom, .. } => *atom,
};
out.set_namespace(&enm.name.namespace);
out.include.type_traits = true;
writeln!(
out,
"static_assert(::std::is_enum<{}>::value, \"expected enum\");",
enm.name.cxx,
);
write!(out, "static_assert(sizeof({}) == sizeof(", enm.name.cxx);
write_atom(out, repr);
writeln!(out, "), \"incorrect size\");");
for variant in &enm.variants {
write!(out, "static_assert(static_cast<");
write_atom(out, repr);
writeln!(
out,
">({}::{}) == {}, \"disagrees with the value in #[cxx::bridge]\");",
enm.name.cxx, variant.name.cxx, variant.discriminant,
);
}
}
fn check_trivial_extern_type(out: &mut OutFile, alias: &TypeAlias, reasons: &[TrivialReason]) {
// NOTE: The following static assertion is just nice-to-have and not
// necessary for soundness. That's because triviality is always declared by
// the user in the form of an unsafe impl of cxx::ExternType:
//
// unsafe impl ExternType for MyType {
// type Id = cxx::type_id!("...");
// type Kind = cxx::kind::Trivial;
// }
//
// Since the user went on the record with their unsafe impl to unsafely
// claim they KNOW that the type is trivial, it's fine for that to be on
// them if that were wrong. However, in practice correctly reasoning about
// the relocatability of C++ types is challenging, particularly if the type
// definition were to change over time, so for now we add this check.
//
// There may be legitimate reasons to opt out of this assertion for support
// of types that the programmer knows are soundly Rust-movable despite not
// being recognized as such by the C++ type system due to a move constructor
// or destructor. To opt out of the relocatability check, they need to do
// one of the following things in any header used by `include!` in their
// bridge.
//
// --- if they define the type:
// struct MyType {
// ...
// + using IsRelocatable = std::true_type;
// };
//
// --- otherwise:
// + template <>
// + struct rust::IsRelocatable<MyType> : std::true_type {};
//
let id = alias.name.to_fully_qualified();
out.builtin.relocatable = true;
writeln!(out, "static_assert(");
if reasons
.iter()
.all(|r| matches!(r, TrivialReason::StructField(_) | TrivialReason::VecElement))
{
// If the type is only used as a struct field or Vec element, not as
// by-value function argument or return value, then C array of trivially
// relocatable type is also permissible.
//
// --- means something sane:
// struct T { char buf[N]; };
//
// --- means something totally different:
// void f(char buf[N]);
//
out.builtin.relocatable_or_array = true;
writeln!(out, " ::rust::IsRelocatableOrArray<{}>::value,", id);
} else {
writeln!(out, " ::rust::IsRelocatable<{}>::value,", id);
}
writeln!(
out,
" \"type {} should be trivially move constructible and trivially destructible in C++ to be used as {} in Rust\");",
id.trim_start_matches("::"),
trivial::as_what(&alias.name, reasons),
);
}
fn write_struct_operator_decls<'a>(out: &mut OutFile<'a>, strct: &'a Struct) {
out.set_namespace(&strct.name.namespace);
out.begin_block(Block::ExternC);
if derive::contains(&strct.derives, Trait::PartialEq) {
let link_name = mangle::operator(&strct.name, "eq");
writeln!(
out,
"bool {}({1} const &, {1} const &) noexcept;",
link_name, strct.name.cxx,
);
if !derive::contains(&strct.derives, Trait::Eq) {
let link_name = mangle::operator(&strct.name, "ne");
writeln!(
out,
"bool {}({1} const &, {1} const &) noexcept;",
link_name, strct.name.cxx,
);
}
}
if derive::contains(&strct.derives, Trait::PartialOrd) {
let link_name = mangle::operator(&strct.name, "lt");
writeln!(
out,
"bool {}({1} const &, {1} const &) noexcept;",
link_name, strct.name.cxx,
);
let link_name = mangle::operator(&strct.name, "le");
writeln!(
out,
"bool {}({1} const &, {1} const &) noexcept;",
link_name, strct.name.cxx,
);
if !derive::contains(&strct.derives, Trait::Ord) {
let link_name = mangle::operator(&strct.name, "gt");
writeln!(
out,
"bool {}({1} const &, {1} const &) noexcept;",
link_name, strct.name.cxx,
);
let link_name = mangle::operator(&strct.name, "ge");
writeln!(
out,
"bool {}({1} const &, {1} const &) noexcept;",
link_name, strct.name.cxx,
);
}
}
if derive::contains(&strct.derives, Trait::Hash) {
out.include.cstddef = true;
let link_name = mangle::operator(&strct.name, "hash");
writeln!(
out,
"::std::size_t {}({} const &) noexcept;",
link_name, strct.name.cxx,
);
}
out.end_block(Block::ExternC);
}
fn write_struct_operators<'a>(out: &mut OutFile<'a>, strct: &'a Struct) {
if out.header {
return;
}
out.set_namespace(&strct.name.namespace);
if derive::contains(&strct.derives, Trait::PartialEq) {
out.next_section();
writeln!(
out,
"bool {0}::operator==({0} const &rhs) const noexcept {{",
strct.name.cxx,
);
let link_name = mangle::operator(&strct.name, "eq");
writeln!(out, " return {}(*this, rhs);", link_name);
writeln!(out, "}}");
out.next_section();
writeln!(
out,
"bool {0}::operator!=({0} const &rhs) const noexcept {{",
strct.name.cxx,
);
if derive::contains(&strct.derives, Trait::Eq) {
writeln!(out, " return !(*this == rhs);");
} else {
let link_name = mangle::operator(&strct.name, "ne");
writeln!(out, " return {}(*this, rhs);", link_name);
}
writeln!(out, "}}");
}
if derive::contains(&strct.derives, Trait::PartialOrd) {
out.next_section();
writeln!(
out,
"bool {0}::operator<({0} const &rhs) const noexcept {{",
strct.name.cxx,
);
let link_name = mangle::operator(&strct.name, "lt");
writeln!(out, " return {}(*this, rhs);", link_name);
writeln!(out, "}}");
out.next_section();
writeln!(
out,
"bool {0}::operator<=({0} const &rhs) const noexcept {{",
strct.name.cxx,
);
let link_name = mangle::operator(&strct.name, "le");
writeln!(out, " return {}(*this, rhs);", link_name);
writeln!(out, "}}");
out.next_section();
writeln!(
out,
"bool {0}::operator>({0} const &rhs) const noexcept {{",
strct.name.cxx,
);
if derive::contains(&strct.derives, Trait::Ord) {
writeln!(out, " return !(*this <= rhs);");
} else {
let link_name = mangle::operator(&strct.name, "gt");
writeln!(out, " return {}(*this, rhs);", link_name);
}
writeln!(out, "}}");
out.next_section();
writeln!(
out,
"bool {0}::operator>=({0} const &rhs) const noexcept {{",
strct.name.cxx,
);
if derive::contains(&strct.derives, Trait::Ord) {
writeln!(out, " return !(*this < rhs);");
} else {
let link_name = mangle::operator(&strct.name, "ge");
writeln!(out, " return {}(*this, rhs);", link_name);
}
writeln!(out, "}}");
}
}
fn write_opaque_type_layout_decls<'a>(out: &mut OutFile<'a>, ety: &'a ExternType) {
out.set_namespace(&ety.name.namespace);
out.begin_block(Block::ExternC);
let link_name = mangle::operator(&ety.name, "sizeof");
writeln!(out, "::std::size_t {}() noexcept;", link_name);
let link_name = mangle::operator(&ety.name, "alignof");
writeln!(out, "::std::size_t {}() noexcept;", link_name);
out.end_block(Block::ExternC);
}
fn write_opaque_type_layout<'a>(out: &mut OutFile<'a>, ety: &'a ExternType) {
if out.header {
return;
}
out.set_namespace(&ety.name.namespace);
out.next_section();
let link_name = mangle::operator(&ety.name, "sizeof");
writeln!(
out,
"::std::size_t {}::layout::size() noexcept {{",
ety.name.cxx,
);
writeln!(out, " return {}();", link_name);
writeln!(out, "}}");
out.next_section();
let link_name = mangle::operator(&ety.name, "alignof");
writeln!(
out,
"::std::size_t {}::layout::align() noexcept {{",
ety.name.cxx,
);
writeln!(out, " return {}();", link_name);
writeln!(out, "}}");
}
fn begin_function_definition(out: &mut OutFile) {
if let Some(annotation) = &out.opt.cxx_impl_annotations {
write!(out, "{} ", annotation);
}
}
fn write_cxx_function_shim<'a>(out: &mut OutFile<'a>, efn: &'a ExternFn) {
out.next_section();
out.set_namespace(&efn.name.namespace);
out.begin_block(Block::ExternC);
begin_function_definition(out);
if efn.throws {
out.builtin.ptr_len = true;
write!(out, "::rust::repr::PtrLen ");
} else {
write_extern_return_type_space(out, &efn.ret);
}
let mangled = mangle::extern_fn(efn, out.types);
write!(out, "{}(", mangled);
if let Some(receiver) = &efn.receiver {
write!(
out,
"{}",
out.types.resolve(&receiver.ty).name.to_fully_qualified(),
);
if !receiver.mutable {
write!(out, " const");
}
write!(out, " &self");
}
for (i, arg) in efn.args.iter().enumerate() {
if i > 0 || efn.receiver.is_some() {
write!(out, ", ");
}
if arg.ty == RustString {
write_type_space(out, &arg.ty);
write!(out, "const *{}", arg.name.cxx);
} else if let Type::RustVec(_) = arg.ty {
write_type_space(out, &arg.ty);
write!(out, "const *{}", arg.name.cxx);
} else {
write_extern_arg(out, arg);
}
}
let indirect_return = indirect_return(efn, out.types);
if indirect_return {
if !efn.args.is_empty() || efn.receiver.is_some() {
write!(out, ", ");
}
write_indirect_return_type_space(out, efn.ret.as_ref().unwrap());
write!(out, "*return$");
}
writeln!(out, ") noexcept {{");
write!(out, " ");
write_return_type(out, &efn.ret);
match &efn.receiver {
None => write!(out, "(*{}$)(", efn.name.rust),
Some(receiver) => write!(
out,
"({}::*{}$)(",
out.types.resolve(&receiver.ty).name.to_fully_qualified(),
efn.name.rust,
),
}
for (i, arg) in efn.args.iter().enumerate() {
if i > 0 {
write!(out, ", ");
}
write_type(out, &arg.ty);
}
write!(out, ")");
if let Some(receiver) = &efn.receiver {
if !receiver.mutable {
write!(out, " const");
}
}
write!(out, " = ");
match &efn.receiver {
None => write!(out, "{}", efn.name.to_fully_qualified()),
Some(receiver) => write!(
out,
"&{}::{}",
out.types.resolve(&receiver.ty).name.to_fully_qualified(),
efn.name.cxx,
),
}
writeln!(out, ";");
write!(out, " ");
if efn.throws {
out.builtin.ptr_len = true;
out.builtin.trycatch = true;
writeln!(out, "::rust::repr::PtrLen throw$;");
writeln!(out, " ::rust::behavior::trycatch(");
writeln!(out, " [&] {{");
write!(out, " ");
}
if indirect_return {
out.include.new = true;
write!(out, "new (return$) ");
write_indirect_return_type(out, efn.ret.as_ref().unwrap());
write!(out, "(");
} else if efn.ret.is_some() {
write!(out, "return ");
}
match &efn.ret {
Some(Type::Ref(_)) => write!(out, "&"),
Some(Type::Str(_)) if !indirect_return => {
out.builtin.rust_str_repr = true;
write!(out, "::rust::impl<::rust::Str>::repr(");
}
Some(ty @ Type::SliceRef(_)) if !indirect_return => {
out.builtin.rust_slice_repr = true;
write!(out, "::rust::impl<");
write_type(out, ty);
write!(out, ">::repr(");
}
_ => {}
}
match &efn.receiver {
None => write!(out, "{}$(", efn.name.rust),
Some(_) => write!(out, "(self.*{}$)(", efn.name.rust),
}
for (i, arg) in efn.args.iter().enumerate() {
if i > 0 {
write!(out, ", ");
}
if let Type::RustBox(_) = &arg.ty {
write_type(out, &arg.ty);
write!(out, "::from_raw({})", arg.name.cxx);
} else if let Type::UniquePtr(_) = &arg.ty {
write_type(out, &arg.ty);
write!(out, "({})", arg.name.cxx);
} else if arg.ty == RustString {
out.builtin.unsafe_bitcopy = true;
write!(
out,
"::rust::String(::rust::unsafe_bitcopy, *{})",
arg.name.cxx,
);
} else if let Type::RustVec(_) = arg.ty {
out.builtin.unsafe_bitcopy = true;
write_type(out, &arg.ty);
write!(out, "(::rust::unsafe_bitcopy, *{})", arg.name.cxx);
} else if out.types.needs_indirect_abi(&arg.ty) {
out.include.utility = true;
write!(out, "::std::move(*{})", arg.name.cxx);
} else {
write!(out, "{}", arg.name.cxx);
}
}
write!(out, ")");
match &efn.ret {
Some(Type::RustBox(_)) => write!(out, ".into_raw()"),
Some(Type::UniquePtr(_)) => write!(out, ".release()"),
Some(Type::Str(_) | Type::SliceRef(_)) if !indirect_return => write!(out, ")"),
_ => {}
}
if indirect_return {
write!(out, ")");
}
writeln!(out, ";");
if efn.throws {
writeln!(out, " throw$.ptr = nullptr;");
writeln!(out, " }},");
writeln!(out, " ::rust::detail::Fail(throw$));");
writeln!(out, " return throw$;");
}
writeln!(out, "}}");
for arg in &efn.args {
if let Type::Fn(f) = &arg.ty {
let var = &arg.name;
write_function_pointer_trampoline(out, efn, var, f);
}
}
out.end_block(Block::ExternC);
}
fn write_function_pointer_trampoline(out: &mut OutFile, efn: &ExternFn, var: &Pair, f: &Signature) {
let r_trampoline = mangle::r_trampoline(efn, var, out.types);
let indirect_call = true;
write_rust_function_decl_impl(out, &r_trampoline, f, indirect_call);
out.next_section();
let c_trampoline = mangle::c_trampoline(efn, var, out.types).to_string();
let doc = Doc::new();
write_rust_function_shim_impl(out, &c_trampoline, f, &doc, &r_trampoline, indirect_call);
}
fn write_rust_function_decl<'a>(out: &mut OutFile<'a>, efn: &'a ExternFn) {
out.set_namespace(&efn.name.namespace);
out.begin_block(Block::ExternC);
let link_name = mangle::extern_fn(efn, out.types);
let indirect_call = false;
write_rust_function_decl_impl(out, &link_name, efn, indirect_call);
out.end_block(Block::ExternC);
}
fn write_rust_function_decl_impl(
out: &mut OutFile,
link_name: &Symbol,
sig: &Signature,
indirect_call: bool,
) {
out.next_section();
if sig.throws {
out.builtin.ptr_len = true;
write!(out, "::rust::repr::PtrLen ");
} else {
write_extern_return_type_space(out, &sig.ret);
}
write!(out, "{}(", link_name);
let mut needs_comma = false;
if let Some(receiver) = &sig.receiver {
write!(
out,
"{}",
out.types.resolve(&receiver.ty).name.to_fully_qualified(),
);
if !receiver.mutable {
write!(out, " const");
}
write!(out, " &self");
needs_comma = true;
}
for arg in &sig.args {
if needs_comma {
write!(out, ", ");
}
write_extern_arg(out, arg);
needs_comma = true;
}
if indirect_return(sig, out.types) {
if needs_comma {
write!(out, ", ");
}
match sig.ret.as_ref().unwrap() {
Type::Ref(ret) => {
write_type_space(out, &ret.inner);
if !ret.mutable {
write!(out, "const ");
}
write!(out, "*");
}
ret => write_type_space(out, ret),
}
write!(out, "*return$");
needs_comma = true;
}
if indirect_call {
if needs_comma {
write!(out, ", ");
}
write!(out, "void *");
}
writeln!(out, ") noexcept;");
}
fn write_rust_function_shim<'a>(out: &mut OutFile<'a>, efn: &'a ExternFn) {
out.set_namespace(&efn.name.namespace);
let local_name = match &efn.sig.receiver {
None => efn.name.cxx.to_string(),
Some(receiver) => format!(
"{}::{}",
out.types.resolve(&receiver.ty).name.cxx,
efn.name.cxx,
),
};
let doc = &efn.doc;
let invoke = mangle::extern_fn(efn, out.types);
let indirect_call = false;
write_rust_function_shim_impl(out, &local_name, efn, doc, &invoke, indirect_call);
}
fn write_rust_function_shim_decl(
out: &mut OutFile,
local_name: &str,
sig: &Signature,
indirect_call: bool,
) {
begin_function_definition(out);
write_return_type(out, &sig.ret);
write!(out, "{}(", local_name);
for (i, arg) in sig.args.iter().enumerate() {
if i > 0 {
write!(out, ", ");
}
write_type_space(out, &arg.ty);
write!(out, "{}", arg.name.cxx);
}
if indirect_call {
if !sig.args.is_empty() {
write!(out, ", ");
}
write!(out, "void *extern$");
}
write!(out, ")");
if let Some(receiver) = &sig.receiver {
if !receiver.mutable {
write!(out, " const");
}
}
if !sig.throws {
write!(out, " noexcept");
}
}
fn write_rust_function_shim_impl(
out: &mut OutFile,
local_name: &str,
sig: &Signature,
doc: &Doc,
invoke: &Symbol,
indirect_call: bool,
) {
if out.header && sig.receiver.is_some() {
// We've already defined this inside the struct.
return;
}
if sig.receiver.is_none() {
// Member functions already documented at their declaration.
write_doc(out, "", doc);
}
write_rust_function_shim_decl(out, local_name, sig, indirect_call);
if out.header {
writeln!(out, ";");
return;
}
writeln!(out, " {{");
for arg in &sig.args {
if arg.ty != RustString && out.types.needs_indirect_abi(&arg.ty) {
out.include.utility = true;
out.builtin.manually_drop = true;
write!(out, " ::rust::ManuallyDrop<");
write_type(out, &arg.ty);
writeln!(out, "> {}$(::std::move({0}));", arg.name.cxx);
}
}
write!(out, " ");
let indirect_return = indirect_return(sig, out.types);
if indirect_return {
out.builtin.maybe_uninit = true;
write!(out, "::rust::MaybeUninit<");
match sig.ret.as_ref().unwrap() {
Type::Ref(ret) => {
write_type_space(out, &ret.inner);
if !ret.mutable {
write!(out, "const ");
}
write!(out, "*");
}
ret => write_type(out, ret),
}
writeln!(out, "> return$;");
write!(out, " ");
} else if let Some(ret) = &sig.ret {
write!(out, "return ");
match ret {
Type::RustBox(_) => {
write_type(out, ret);
write!(out, "::from_raw(");
}
Type::UniquePtr(_) => {
write_type(out, ret);
write!(out, "(");
}
Type::Ref(_) => write!(out, "*"),
Type::Str(_) => {
out.builtin.rust_str_new_unchecked = true;
write!(out, "::rust::impl<::rust::Str>::new_unchecked(");
}
Type::SliceRef(_) => {
out.builtin.rust_slice_new = true;
write!(out, "::rust::impl<");
write_type(out, ret);
write!(out, ">::slice(");
}
_ => {}
}
}
if sig.throws {
out.builtin.ptr_len = true;
write!(out, "::rust::repr::PtrLen error$ = ");
}
write!(out, "{}(", invoke);
let mut needs_comma = false;
if sig.receiver.is_some() {
write!(out, "*this");
needs_comma = true;
}
for arg in &sig.args {
if needs_comma {
write!(out, ", ");
}
if out.types.needs_indirect_abi(&arg.ty) {
write!(out, "&");
}
write!(out, "{}", arg.name.cxx);
match &arg.ty {
Type::RustBox(_) => write!(out, ".into_raw()"),
Type::UniquePtr(_) => write!(out, ".release()"),
ty if ty != RustString && out.types.needs_indirect_abi(ty) => write!(out, "$.value"),
_ => {}
}
needs_comma = true;
}
if indirect_return {
if needs_comma {
write!(out, ", ");
}
write!(out, "&return$.value");
needs_comma = true;
}
if indirect_call {
if needs_comma {
write!(out, ", ");
}
write!(out, "extern$");
}
write!(out, ")");
if !indirect_return {
if let Some(Type::RustBox(_) | Type::UniquePtr(_) | Type::Str(_) | Type::SliceRef(_)) =
&sig.ret
{
write!(out, ")");
}
}
writeln!(out, ";");
if sig.throws {
out.builtin.rust_error = true;
writeln!(out, " if (error$.ptr) {{");
writeln!(out, " throw ::rust::impl<::rust::Error>::error(error$);");
writeln!(out, " }}");
}
if indirect_return {
write!(out, " return ");
match sig.ret.as_ref().unwrap() {
Type::Ref(_) => write!(out, "*return$.value"),
_ => {
out.include.utility = true;
write!(out, "::std::move(return$.value)");
}
}
writeln!(out, ";");
}
writeln!(out, "}}");
}
fn write_return_type(out: &mut OutFile, ty: &Option<Type>) {
match ty {
None => write!(out, "void "),
Some(ty) => write_type_space(out, ty),
}
}
fn indirect_return(sig: &Signature, types: &Types) -> bool {
sig.ret
.as_ref()
.map_or(false, |ret| sig.throws || types.needs_indirect_abi(ret))
}
fn write_indirect_return_type(out: &mut OutFile, ty: &Type) {
match ty {
Type::RustBox(ty) | Type::UniquePtr(ty) => {
write_type_space(out, &ty.inner);
write!(out, "*");
}
Type::Ref(ty) => {
write_type_space(out, &ty.inner);
if !ty.mutable {
write!(out, "const ");
}
write!(out, "*");
}
_ => write_type(out, ty),
}
}
fn write_indirect_return_type_space(out: &mut OutFile, ty: &Type) {
write_indirect_return_type(out, ty);
match ty {
Type::RustBox(_) | Type::UniquePtr(_) | Type::Ref(_) => {}
Type::Str(_) | Type::SliceRef(_) => write!(out, " "),
_ => write_space_after_type(out, ty),
}
}
fn write_extern_return_type_space(out: &mut OutFile, ty: &Option<Type>) {
match ty {
Some(Type::RustBox(ty) | Type::UniquePtr(ty)) => {
write_type_space(out, &ty.inner);
write!(out, "*");
}
Some(Type::Ref(ty)) => {
write_type_space(out, &ty.inner);
if !ty.mutable {
write!(out, "const ");
}
write!(out, "*");
}
Some(Type::Str(_) | Type::SliceRef(_)) => {
out.builtin.repr_fat = true;
write!(out, "::rust::repr::Fat ");
}
Some(ty) if out.types.needs_indirect_abi(ty) => write!(out, "void "),
_ => write_return_type(out, ty),
}
}
fn write_extern_arg(out: &mut OutFile, arg: &Var) {
match &arg.ty {
Type::RustBox(ty) | Type::UniquePtr(ty) | Type::CxxVector(ty) => {
write_type_space(out, &ty.inner);
write!(out, "*");
}
_ => write_type_space(out, &arg.ty),
}
if out.types.needs_indirect_abi(&arg.ty) {
write!(out, "*");
}
write!(out, "{}", arg.name.cxx);
}
fn write_type(out: &mut OutFile, ty: &Type) {
match ty {
Type::Ident(ident) => match Atom::from(&ident.rust) {
Some(atom) => write_atom(out, atom),
None => write!(
out,
"{}",
out.types.resolve(ident).name.to_fully_qualified(),
),
},
Type::RustBox(ty) => {
write!(out, "::rust::Box<");
write_type(out, &ty.inner);
write!(out, ">");
}
Type::RustVec(ty) => {
write!(out, "::rust::Vec<");
write_type(out, &ty.inner);
write!(out, ">");
}
Type::UniquePtr(ptr) => {
write!(out, "::std::unique_ptr<");
write_type(out, &ptr.inner);
write!(out, ">");
}
Type::SharedPtr(ptr) => {
write!(out, "::std::shared_ptr<");
write_type(out, &ptr.inner);
write!(out, ">");
}
Type::WeakPtr(ptr) => {
write!(out, "::std::weak_ptr<");
write_type(out, &ptr.inner);
write!(out, ">");
}
Type::CxxVector(ty) => {
write!(out, "::std::vector<");
write_type(out, &ty.inner);
write!(out, ">");
}
Type::Ref(r) => {
write_type_space(out, &r.inner);
if !r.mutable {
write!(out, "const ");
}
write!(out, "&");
}
Type::Ptr(p) => {
write_type_space(out, &p.inner);
if !p.mutable {
write!(out, "const ");
}
write!(out, "*");
}
Type::Str(_) => {
write!(out, "::rust::Str");
}
Type::SliceRef(slice) => {
write!(out, "::rust::Slice<");
write_type_space(out, &slice.inner);
if slice.mutability.is_none() {
write!(out, "const");
}
write!(out, ">");
}
Type::Fn(f) => {
write!(out, "::rust::Fn<");
match &f.ret {
Some(ret) => write_type(out, ret),
None => write!(out, "void"),
}
write!(out, "(");
for (i, arg) in f.args.iter().enumerate() {
if i > 0 {
write!(out, ", ");
}
write_type(out, &arg.ty);
}
write!(out, ")>");
}
Type::Array(a) => {
write!(out, "::std::array<");
write_type(out, &a.inner);
write!(out, ", {}>", &a.len);
}
Type::Void(_) => unreachable!(),
}
}
fn write_atom(out: &mut OutFile, atom: Atom) {
match atom {
Bool => write!(out, "bool"),
Char => write!(out, "char"),
U8 => write!(out, "::std::uint8_t"),
U16 => write!(out, "::std::uint16_t"),
U32 => write!(out, "::std::uint32_t"),
U64 => write!(out, "::std::uint64_t"),
Usize => write!(out, "::std::size_t"),
I8 => write!(out, "::std::int8_t"),
I16 => write!(out, "::std::int16_t"),
I32 => write!(out, "::std::int32_t"),
I64 => write!(out, "::std::int64_t"),
Isize => write!(out, "::rust::isize"),
F32 => write!(out, "float"),
F64 => write!(out, "double"),
CxxString => write!(out, "::std::string"),
RustString => write!(out, "::rust::String"),
}
}
fn write_type_space(out: &mut OutFile, ty: &Type) {
write_type(out, ty);
write_space_after_type(out, ty);
}
fn write_space_after_type(out: &mut OutFile, ty: &Type) {
match ty {
Type::Ident(_)
| Type::RustBox(_)
| Type::UniquePtr(_)
| Type::SharedPtr(_)
| Type::WeakPtr(_)
| Type::Str(_)
| Type::CxxVector(_)
| Type::RustVec(_)
| Type::SliceRef(_)
| Type::Fn(_)
| Type::Array(_) => write!(out, " "),
Type::Ref(_) | Type::Ptr(_) => {}
Type::Void(_) => unreachable!(),
}
}
#[derive(Copy, Clone)]
enum UniquePtr<'a> {
Ident(&'a Ident),
CxxVector(&'a Ident),
}
trait ToTypename {
fn to_typename(&self, types: &Types) -> String;
}
impl ToTypename for Ident {
fn to_typename(&self, types: &Types) -> String {
types.resolve(self).name.to_fully_qualified()
}
}
impl<'a> ToTypename for UniquePtr<'a> {
fn to_typename(&self, types: &Types) -> String {
match self {
UniquePtr::Ident(ident) => ident.to_typename(types),
UniquePtr::CxxVector(element) => {
format!("::std::vector<{}>", element.to_typename(types))
}
}
}
}
trait ToMangled {
fn to_mangled(&self, types: &Types) -> Symbol;
}
impl ToMangled for Ident {
fn to_mangled(&self, types: &Types) -> Symbol {
types.resolve(self).name.to_symbol()
}
}
impl<'a> ToMangled for UniquePtr<'a> {
fn to_mangled(&self, types: &Types) -> Symbol {
match self {
UniquePtr::Ident(ident) => ident.to_mangled(types),
UniquePtr::CxxVector(element) => {
symbol::join(&[&"std", &"vector", &element.to_mangled(types)])
}
}
}
}
fn write_generic_instantiations(out: &mut OutFile) {
if out.header {
return;
}
out.next_section();
out.set_namespace(Default::default());
out.begin_block(Block::ExternC);
for impl_key in out.types.impls.keys() {
out.next_section();
match *impl_key {
ImplKey::RustBox(ident) => write_rust_box_extern(out, ident),
ImplKey::RustVec(ident) => write_rust_vec_extern(out, ident),
ImplKey::UniquePtr(ident) => write_unique_ptr(out, ident),
ImplKey::SharedPtr(ident) => write_shared_ptr(out, ident),
ImplKey::WeakPtr(ident) => write_weak_ptr(out, ident),
ImplKey::CxxVector(ident) => write_cxx_vector(out, ident),
}
}
out.end_block(Block::ExternC);
out.begin_block(Block::Namespace("rust"));
out.begin_block(Block::InlineNamespace("cxxbridge1"));
for impl_key in out.types.impls.keys() {
match *impl_key {
ImplKey::RustBox(ident) => write_rust_box_impl(out, ident),
ImplKey::RustVec(ident) => write_rust_vec_impl(out, ident),
_ => {}
}
}
out.end_block(Block::InlineNamespace("cxxbridge1"));
out.end_block(Block::Namespace("rust"));
}
fn write_rust_box_extern(out: &mut OutFile, key: NamedImplKey) {
let resolve = out.types.resolve(&key);
let inner = resolve.name.to_fully_qualified();
let instance = resolve.name.to_symbol();
writeln!(
out,
"{} *cxxbridge1$box${}$alloc() noexcept;",
inner, instance,
);
writeln!(
out,
"void cxxbridge1$box${}$dealloc({} *) noexcept;",
instance, inner,
);
writeln!(
out,
"void cxxbridge1$box${}$drop(::rust::Box<{}> *ptr) noexcept;",
instance, inner,
);
}
fn write_rust_vec_extern(out: &mut OutFile, key: NamedImplKey) {
let element = key.rust;
let inner = element.to_typename(out.types);
let instance = element.to_mangled(out.types);
out.include.cstddef = true;
writeln!(
out,
"void cxxbridge1$rust_vec${}$new(::rust::Vec<{}> const *ptr) noexcept;",
instance, inner,
);
writeln!(
out,
"void cxxbridge1$rust_vec${}$drop(::rust::Vec<{}> *ptr) noexcept;",
instance, inner,
);
writeln!(
out,
"::std::size_t cxxbridge1$rust_vec${}$len(::rust::Vec<{}> const *ptr) noexcept;",
instance, inner,
);
writeln!(
out,
"::std::size_t cxxbridge1$rust_vec${}$capacity(::rust::Vec<{}> const *ptr) noexcept;",
instance, inner,
);
writeln!(
out,
"{} const *cxxbridge1$rust_vec${}$data(::rust::Vec<{0}> const *ptr) noexcept;",
inner, instance,
);
writeln!(
out,
"void cxxbridge1$rust_vec${}$reserve_total(::rust::Vec<{}> *ptr, ::std::size_t new_cap) noexcept;",
instance, inner,
);
writeln!(
out,
"void cxxbridge1$rust_vec${}$set_len(::rust::Vec<{}> *ptr, ::std::size_t len) noexcept;",
instance, inner,
);
writeln!(
out,
"void cxxbridge1$rust_vec${}$truncate(::rust::Vec<{}> *ptr, ::std::size_t len) noexcept;",
instance, inner,
);
}
fn write_rust_box_impl(out: &mut OutFile, key: NamedImplKey) {
let resolve = out.types.resolve(&key);
let inner = resolve.name.to_fully_qualified();
let instance = resolve.name.to_symbol();
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(
out,
"{} *Box<{}>::allocation::alloc() noexcept {{",
inner, inner,
);
writeln!(out, " return cxxbridge1$box${}$alloc();", instance);
writeln!(out, "}}");
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(
out,
"void Box<{}>::allocation::dealloc({} *ptr) noexcept {{",
inner, inner,
);
writeln!(out, " cxxbridge1$box${}$dealloc(ptr);", instance);
writeln!(out, "}}");
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(out, "void Box<{}>::drop() noexcept {{", inner);
writeln!(out, " cxxbridge1$box${}$drop(this);", instance);
writeln!(out, "}}");
}
fn write_rust_vec_impl(out: &mut OutFile, key: NamedImplKey) {
let element = key.rust;
let inner = element.to_typename(out.types);
let instance = element.to_mangled(out.types);
out.include.cstddef = true;
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(out, "Vec<{}>::Vec() noexcept {{", inner);
writeln!(out, " cxxbridge1$rust_vec${}$new(this);", instance);
writeln!(out, "}}");
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(out, "void Vec<{}>::drop() noexcept {{", inner);
writeln!(out, " return cxxbridge1$rust_vec${}$drop(this);", instance);
writeln!(out, "}}");
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(
out,
"::std::size_t Vec<{}>::size() const noexcept {{",
inner,
);
writeln!(out, " return cxxbridge1$rust_vec${}$len(this);", instance);
writeln!(out, "}}");
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(
out,
"::std::size_t Vec<{}>::capacity() const noexcept {{",
inner,
);
writeln!(
out,
" return cxxbridge1$rust_vec${}$capacity(this);",
instance,
);
writeln!(out, "}}");
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(out, "{} const *Vec<{0}>::data() const noexcept {{", inner);
writeln!(out, " return cxxbridge1$rust_vec${}$data(this);", instance);
writeln!(out, "}}");
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(
out,
"void Vec<{}>::reserve_total(::std::size_t new_cap) noexcept {{",
inner,
);
writeln!(
out,
" return cxxbridge1$rust_vec${}$reserve_total(this, new_cap);",
instance,
);
writeln!(out, "}}");
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(
out,
"void Vec<{}>::set_len(::std::size_t len) noexcept {{",
inner,
);
writeln!(
out,
" return cxxbridge1$rust_vec${}$set_len(this, len);",
instance,
);
writeln!(out, "}}");
writeln!(out, "template <>");
begin_function_definition(out);
writeln!(out, "void Vec<{}>::truncate(::std::size_t len) {{", inner,);
writeln!(
out,
" return cxxbridge1$rust_vec${}$truncate(this, len);",
instance,
);
writeln!(out, "}}");
}
fn write_unique_ptr(out: &mut OutFile, key: NamedImplKey) {
let ty = UniquePtr::Ident(key.rust);
write_unique_ptr_common(out, ty);
}
// Shared by UniquePtr<T> and UniquePtr<CxxVector<T>>.
fn write_unique_ptr_common(out: &mut OutFile, ty: UniquePtr) {
out.include.new = true;
out.include.utility = true;
let inner = ty.to_typename(out.types);
let instance = ty.to_mangled(out.types);
let can_construct_from_value = match ty {
// Some aliases are to opaque types; some are to trivial types. We can't
// know at code generation time, so we generate both C++ and Rust side
// bindings for a "new" method anyway. But the Rust code can't be called
// for Opaque types because the 'new' method is not implemented.
UniquePtr::Ident(ident) => out.types.is_maybe_trivial(ident),
UniquePtr::CxxVector(_) => false,
};
let conditional_delete = match ty {
UniquePtr::Ident(ident) => {
!out.types.structs.contains_key(ident) && !out.types.enums.contains_key(ident)
}
UniquePtr::CxxVector(_) => false,
};
if conditional_delete {
out.builtin.is_complete = true;
let definition = match ty {
UniquePtr::Ident(ty) => &out.types.resolve(ty).name.cxx,
UniquePtr::CxxVector(_) => unreachable!(),
};
writeln!(
out,
"static_assert(::rust::detail::is_complete<{}>::value, \"definition of {} is required\");",
inner, definition,
);
}
writeln!(
out,
"static_assert(sizeof(::std::unique_ptr<{}>) == sizeof(void *), \"\");",
inner,
);
writeln!(
out,
"static_assert(alignof(::std::unique_ptr<{}>) == alignof(void *), \"\");",
inner,
);
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$unique_ptr${}$null(::std::unique_ptr<{}> *ptr) noexcept {{",
instance, inner,
);
writeln!(out, " ::new (ptr) ::std::unique_ptr<{}>();", inner);
writeln!(out, "}}");
if can_construct_from_value {
out.builtin.maybe_uninit = true;
begin_function_definition(out);
writeln!(
out,
"{} *cxxbridge1$unique_ptr${}$uninit(::std::unique_ptr<{}> *ptr) noexcept {{",
inner, instance, inner,
);
writeln!(
out,
" {} *uninit = reinterpret_cast<{} *>(new ::rust::MaybeUninit<{}>);",
inner, inner, inner,
);
writeln!(out, " ::new (ptr) ::std::unique_ptr<{}>(uninit);", inner);
writeln!(out, " return uninit;");
writeln!(out, "}}");
}
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$unique_ptr${}$raw(::std::unique_ptr<{}> *ptr, {} *raw) noexcept {{",
instance, inner, inner,
);
writeln!(out, " ::new (ptr) ::std::unique_ptr<{}>(raw);", inner);
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"{} const *cxxbridge1$unique_ptr${}$get(::std::unique_ptr<{}> const &ptr) noexcept {{",
inner, instance, inner,
);
writeln!(out, " return ptr.get();");
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"{} *cxxbridge1$unique_ptr${}$release(::std::unique_ptr<{}> &ptr) noexcept {{",
inner, instance, inner,
);
writeln!(out, " return ptr.release();");
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$unique_ptr${}$drop(::std::unique_ptr<{}> *ptr) noexcept {{",
instance, inner,
);
if conditional_delete {
out.builtin.deleter_if = true;
writeln!(
out,
" ::rust::deleter_if<::rust::detail::is_complete<{}>::value>{{}}(ptr);",
inner,
);
} else {
writeln!(out, " ptr->~unique_ptr();");
}
writeln!(out, "}}");
}
fn write_shared_ptr(out: &mut OutFile, key: NamedImplKey) {
let ident = key.rust;
let resolve = out.types.resolve(ident);
let inner = resolve.name.to_fully_qualified();
let instance = resolve.name.to_symbol();
out.include.new = true;
out.include.utility = true;
// Some aliases are to opaque types; some are to trivial types. We can't
// know at code generation time, so we generate both C++ and Rust side
// bindings for a "new" method anyway. But the Rust code can't be called for
// Opaque types because the 'new' method is not implemented.
let can_construct_from_value = out.types.is_maybe_trivial(ident);
writeln!(
out,
"static_assert(sizeof(::std::shared_ptr<{}>) == 2 * sizeof(void *), \"\");",
inner,
);
writeln!(
out,
"static_assert(alignof(::std::shared_ptr<{}>) == alignof(void *), \"\");",
inner,
);
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$shared_ptr${}$null(::std::shared_ptr<{}> *ptr) noexcept {{",
instance, inner,
);
writeln!(out, " ::new (ptr) ::std::shared_ptr<{}>();", inner);
writeln!(out, "}}");
if can_construct_from_value {
out.builtin.maybe_uninit = true;
begin_function_definition(out);
writeln!(
out,
"{} *cxxbridge1$shared_ptr${}$uninit(::std::shared_ptr<{}> *ptr) noexcept {{",
inner, instance, inner,
);
writeln!(
out,
" {} *uninit = reinterpret_cast<{} *>(new ::rust::MaybeUninit<{}>);",
inner, inner, inner,
);
writeln!(out, " ::new (ptr) ::std::shared_ptr<{}>(uninit);", inner);
writeln!(out, " return uninit;");
writeln!(out, "}}");
}
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$shared_ptr${}$clone(::std::shared_ptr<{}> const &self, ::std::shared_ptr<{}> *ptr) noexcept {{",
instance, inner, inner,
);
writeln!(out, " ::new (ptr) ::std::shared_ptr<{}>(self);", inner);
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"{} const *cxxbridge1$shared_ptr${}$get(::std::shared_ptr<{}> const &self) noexcept {{",
inner, instance, inner,
);
writeln!(out, " return self.get();");
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$shared_ptr${}$drop(::std::shared_ptr<{}> *self) noexcept {{",
instance, inner,
);
writeln!(out, " self->~shared_ptr();");
writeln!(out, "}}");
}
fn write_weak_ptr(out: &mut OutFile, key: NamedImplKey) {
let resolve = out.types.resolve(&key);
let inner = resolve.name.to_fully_qualified();
let instance = resolve.name.to_symbol();
out.include.new = true;
out.include.utility = true;
writeln!(
out,
"static_assert(sizeof(::std::weak_ptr<{}>) == 2 * sizeof(void *), \"\");",
inner,
);
writeln!(
out,
"static_assert(alignof(::std::weak_ptr<{}>) == alignof(void *), \"\");",
inner,
);
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$weak_ptr${}$null(::std::weak_ptr<{}> *ptr) noexcept {{",
instance, inner,
);
writeln!(out, " ::new (ptr) ::std::weak_ptr<{}>();", inner);
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$weak_ptr${}$clone(::std::weak_ptr<{}> const &self, ::std::weak_ptr<{}> *ptr) noexcept {{",
instance, inner, inner,
);
writeln!(out, " ::new (ptr) ::std::weak_ptr<{}>(self);", inner);
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$weak_ptr${}$downgrade(::std::shared_ptr<{}> const &shared, ::std::weak_ptr<{}> *weak) noexcept {{",
instance, inner, inner,
);
writeln!(out, " ::new (weak) ::std::weak_ptr<{}>(shared);", inner);
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$weak_ptr${}$upgrade(::std::weak_ptr<{}> const &weak, ::std::shared_ptr<{}> *shared) noexcept {{",
instance, inner, inner,
);
writeln!(
out,
" ::new (shared) ::std::shared_ptr<{}>(weak.lock());",
inner,
);
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$weak_ptr${}$drop(::std::weak_ptr<{}> *self) noexcept {{",
instance, inner,
);
writeln!(out, " self->~weak_ptr();");
writeln!(out, "}}");
}
fn write_cxx_vector(out: &mut OutFile, key: NamedImplKey) {
let element = key.rust;
let inner = element.to_typename(out.types);
let instance = element.to_mangled(out.types);
out.include.cstddef = true;
out.include.utility = true;
out.builtin.destroy = true;
begin_function_definition(out);
writeln!(
out,
"::std::vector<{}> *cxxbridge1$std$vector${}$new() noexcept {{",
inner, instance,
);
writeln!(out, " return new ::std::vector<{}>();", inner);
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"::std::size_t cxxbridge1$std$vector${}$size(::std::vector<{}> const &s) noexcept {{",
instance, inner,
);
writeln!(out, " return s.size();");
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"{} *cxxbridge1$std$vector${}$get_unchecked(::std::vector<{}> *s, ::std::size_t pos) noexcept {{",
inner, instance, inner,
);
writeln!(out, " return &(*s)[pos];");
writeln!(out, "}}");
if out.types.is_maybe_trivial(element) {
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$std$vector${}$push_back(::std::vector<{}> *v, {} *value) noexcept {{",
instance, inner, inner,
);
writeln!(out, " v->push_back(::std::move(*value));");
writeln!(out, " ::rust::destroy(value);");
writeln!(out, "}}");
begin_function_definition(out);
writeln!(
out,
"void cxxbridge1$std$vector${}$pop_back(::std::vector<{}> *v, {} *out) noexcept {{",
instance, inner, inner,
);
writeln!(out, " ::new (out) {}(::std::move(v->back()));", inner);
writeln!(out, " v->pop_back();");
writeln!(out, "}}");
}
out.include.memory = true;
write_unique_ptr_common(out, UniquePtr::CxxVector(element));
}