use crate::syntax::Atom::{self, *};
use proc_macro2::{Literal, Span, TokenStream};
use quote::ToTokens;
use std::cmp::Ordering;
use std::collections::BTreeSet;
use std::fmt::{self, Display};
use std::str::FromStr;
use syn::{Error, Expr, Lit, Result, Token, UnOp};
pub(crate) struct DiscriminantSet {
repr: Option<Atom>,
values: BTreeSet<Discriminant>,
previous: Option<Discriminant>,
}
#[derive(Copy, Clone, Eq, PartialEq)]
pub(crate) struct Discriminant {
sign: Sign,
magnitude: u64,
}
#[derive(Copy, Clone, Eq, PartialEq)]
enum Sign {
Negative,
Positive,
}
impl DiscriminantSet {
pub(crate) fn new(repr: Option<Atom>) -> Self {
DiscriminantSet {
repr,
values: BTreeSet::new(),
previous: None,
}
}
pub(crate) fn insert(&mut self, expr: &Expr) -> Result<Discriminant> {
let (discriminant, repr) = expr_to_discriminant(expr)?;
match (self.repr, repr) {
(None, Some(new_repr)) => {
if let Some(limits) = Limits::of(new_repr) {
for &past in &self.values {
if limits.min <= past && past <= limits.max {
continue;
}
let msg = format!(
"discriminant value `{}` is outside the limits of {}",
past, new_repr,
);
return Err(Error::new(Span::call_site(), msg));
}
}
self.repr = Some(new_repr);
}
(Some(prev), Some(repr)) if prev != repr => {
let msg = format!("expected {}, found {}", prev, repr);
return Err(Error::new(Span::call_site(), msg));
}
_ => {}
}
insert(self, discriminant)
}
pub(crate) fn insert_next(&mut self) -> Result<Discriminant> {
let discriminant = match self.previous {
None => Discriminant::zero(),
Some(mut discriminant) => match discriminant.sign {
Sign::Negative => {
discriminant.magnitude -= 1;
if discriminant.magnitude == 0 {
discriminant.sign = Sign::Positive;
}
discriminant
}
Sign::Positive => {
if discriminant.magnitude == u64::MAX {
let msg = format!("discriminant overflow on value after {}", u64::MAX);
return Err(Error::new(Span::call_site(), msg));
}
discriminant.magnitude += 1;
discriminant
}
},
};
insert(self, discriminant)
}
pub(crate) fn inferred_repr(&self) -> Result<Atom> {
if let Some(repr) = self.repr {
return Ok(repr);
}
if self.values.is_empty() {
return Ok(U8);
}
let min = *self.values.iter().next().unwrap();
let max = *self.values.iter().next_back().unwrap();
for limits in &LIMITS {
if limits.min <= min && max <= limits.max {
return Ok(limits.repr);
}
}
let msg = "these discriminant values do not fit in any supported enum repr type";
Err(Error::new(Span::call_site(), msg))
}
}
fn expr_to_discriminant(expr: &Expr) -> Result<(Discriminant, Option<Atom>)> {
match expr {
Expr::Lit(expr) => {
if let Lit::Int(lit) = &expr.lit {
let discriminant = lit.base10_parse::<Discriminant>()?;
let repr = parse_int_suffix(lit.suffix())?;
return Ok((discriminant, repr));
}
}
Expr::Unary(unary) => {
if let UnOp::Neg(_) = unary.op {
let (mut discriminant, repr) = expr_to_discriminant(&unary.expr)?;
discriminant.sign = match discriminant.sign {
Sign::Positive => Sign::Negative,
Sign::Negative => Sign::Positive,
};
return Ok((discriminant, repr));
}
}
_ => {}
}
Err(Error::new_spanned(
expr,
"enums with non-integer literal discriminants are not supported yet",
))
}
fn insert(set: &mut DiscriminantSet, discriminant: Discriminant) -> Result<Discriminant> {
if let Some(expected_repr) = set.repr {
if let Some(limits) = Limits::of(expected_repr) {
if discriminant < limits.min || limits.max < discriminant {
let msg = format!(
"discriminant value `{}` is outside the limits of {}",
discriminant, expected_repr,
);
return Err(Error::new(Span::call_site(), msg));
}
}
}
set.values.insert(discriminant);
set.previous = Some(discriminant);
Ok(discriminant)
}
impl Discriminant {
pub(crate) const fn zero() -> Self {
Discriminant {
sign: Sign::Positive,
magnitude: 0,
}
}
const fn pos(u: u64) -> Self {
Discriminant {
sign: Sign::Positive,
magnitude: u,
}
}
const fn neg(i: i64) -> Self {
Discriminant {
sign: if i < 0 {
Sign::Negative
} else {
Sign::Positive
},
// This is `i.abs() as u64` but without overflow on MIN. Uses the
// fact that MIN.wrapping_abs() wraps back to MIN whose binary
// representation is 1<<63, and thus the `as u64` conversion
// produces 1<<63 too which happens to be the correct unsigned
// magnitude.
magnitude: i.wrapping_abs() as u64,
}
}
#[cfg(feature = "experimental-enum-variants-from-header")]
pub(crate) const fn checked_succ(self) -> Option<Self> {
match self.sign {
Sign::Negative => {
if self.magnitude == 1 {
Some(Discriminant::zero())
} else {
Some(Discriminant {
sign: Sign::Negative,
magnitude: self.magnitude - 1,
})
}
}
Sign::Positive => match self.magnitude.checked_add(1) {
Some(magnitude) => Some(Discriminant {
sign: Sign::Positive,
magnitude,
}),
None => None,
},
}
}
}
impl Display for Discriminant {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.sign == Sign::Negative {
f.write_str("-")?;
}
write!(f, "{}", self.magnitude)
}
}
impl ToTokens for Discriminant {
fn to_tokens(&self, tokens: &mut TokenStream) {
if self.sign == Sign::Negative {
Token![-](Span::call_site()).to_tokens(tokens);
}
Literal::u64_unsuffixed(self.magnitude).to_tokens(tokens);
}
}
impl FromStr for Discriminant {
type Err = Error;
fn from_str(mut s: &str) -> Result<Self> {
let sign = if s.starts_with('-') {
s = &s[1..];
Sign::Negative
} else {
Sign::Positive
};
match s.parse::<u64>() {
Ok(magnitude) => Ok(Discriminant { sign, magnitude }),
Err(_) => Err(Error::new(
Span::call_site(),
"discriminant value outside of supported range",
)),
}
}
}
impl Ord for Discriminant {
fn cmp(&self, other: &Self) -> Ordering {
use self::Sign::{Negative, Positive};
match (self.sign, other.sign) {
(Negative, Negative) => self.magnitude.cmp(&other.magnitude).reverse(),
(Negative, Positive) => Ordering::Less, // negative < positive
(Positive, Negative) => Ordering::Greater, // positive > negative
(Positive, Positive) => self.magnitude.cmp(&other.magnitude),
}
}
}
impl PartialOrd for Discriminant {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
fn parse_int_suffix(suffix: &str) -> Result<Option<Atom>> {
if suffix.is_empty() {
return Ok(None);
}
if let Some(atom) = Atom::from_str(suffix) {
match atom {
U8 | U16 | U32 | U64 | Usize | I8 | I16 | I32 | I64 | Isize => return Ok(Some(atom)),
_ => {}
}
}
let msg = format!("unrecognized integer suffix: `{}`", suffix);
Err(Error::new(Span::call_site(), msg))
}
#[derive(Copy, Clone)]
struct Limits {
repr: Atom,
min: Discriminant,
max: Discriminant,
}
impl Limits {
fn of(repr: Atom) -> Option<Limits> {
for limits in &LIMITS {
if limits.repr == repr {
return Some(*limits);
}
}
None
}
}
const LIMITS: [Limits; 8] = [
Limits {
repr: U8,
min: Discriminant::zero(),
max: Discriminant::pos(u8::MAX as u64),
},
Limits {
repr: I8,
min: Discriminant::neg(i8::MIN as i64),
max: Discriminant::pos(i8::MAX as u64),
},
Limits {
repr: U16,
min: Discriminant::zero(),
max: Discriminant::pos(u16::MAX as u64),
},
Limits {
repr: I16,
min: Discriminant::neg(i16::MIN as i64),
max: Discriminant::pos(i16::MAX as u64),
},
Limits {
repr: U32,
min: Discriminant::zero(),
max: Discriminant::pos(u32::MAX as u64),
},
Limits {
repr: I32,
min: Discriminant::neg(i32::MIN as i64),
max: Discriminant::pos(i32::MAX as u64),
},
Limits {
repr: U64,
min: Discriminant::zero(),
max: Discriminant::pos(u64::MAX),
},
Limits {
repr: I64,
min: Discriminant::neg(i64::MIN),
max: Discriminant::pos(i64::MAX as u64),
},
];