//! The enum [`Either`] with variants `Left` and `Right` is a general purpose
//! sum type with two cases.
//!
//! [`Either`]: enum.Either.html
//!
//! **Crate features:**
//!
//! * `"use_std"`
//! Enabled by default. Disable to make the library `#![no_std]`.
//!
//! * `"serde"`
//! Disabled by default. Enable to `#[derive(Serialize, Deserialize)]` for `Either`
//!
#![doc(html_root_url = "https://docs.rs/either/1/")]
#![no_std]
#[cfg(any(test, feature = "use_std"))]
extern crate std;
#[cfg(feature = "serde")]
pub mod serde_untagged;
#[cfg(feature = "serde")]
pub mod serde_untagged_optional;
use core::convert::{AsMut, AsRef};
use core::fmt;
use core::future::Future;
use core::ops::Deref;
use core::ops::DerefMut;
use core::pin::Pin;
#[cfg(any(test, feature = "use_std"))]
use std::error::Error;
#[cfg(any(test, feature = "use_std"))]
use std::io::{self, BufRead, Read, Seek, SeekFrom, Write};
pub use crate::Either::{Left, Right};
/// The enum `Either` with variants `Left` and `Right` is a general purpose
/// sum type with two cases.
///
/// The `Either` type is symmetric and treats its variants the same way, without
/// preference.
/// (For representing success or error, use the regular `Result` enum instead.)
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[derive(Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Either<L, R> {
/// A value of type `L`.
Left(L),
/// A value of type `R`.
Right(R),
}
/// Evaluate the provided expression for both [`Either::Left`] and [`Either::Right`].
///
/// This macro is useful in cases where both sides of [`Either`] can be interacted with
/// in the same way even though the don't share the same type.
///
/// Syntax: `either::for_both!(` *expression* `,` *pattern* `=>` *expression* `)`
///
/// # Example
///
/// ```
/// use either::Either;
///
/// fn length(owned_or_borrowed: Either<String, &'static str>) -> usize {
/// either::for_both!(owned_or_borrowed, s => s.len())
/// }
///
/// fn main() {
/// let borrowed = Either::Right("Hello world!");
/// let owned = Either::Left("Hello world!".to_owned());
///
/// assert_eq!(length(borrowed), 12);
/// assert_eq!(length(owned), 12);
/// }
/// ```
#[macro_export]
macro_rules! for_both {
($value:expr, $pattern:pat => $result:expr) => {
match $value {
$crate::Either::Left($pattern) => $result,
$crate::Either::Right($pattern) => $result,
}
};
}
/// Macro for unwrapping the left side of an [`Either`], which fails early
/// with the opposite side. Can only be used in functions that return
/// `Either` because of the early return of `Right` that it provides.
///
/// See also [`try_right!`] for its dual, which applies the same just to the
/// right side.
///
/// # Example
///
/// ```
/// use either::{Either, Left, Right};
///
/// fn twice(wrapper: Either<u32, &str>) -> Either<u32, &str> {
/// let value = either::try_left!(wrapper);
/// Left(value * 2)
/// }
///
/// fn main() {
/// assert_eq!(twice(Left(2)), Left(4));
/// assert_eq!(twice(Right("ups")), Right("ups"));
/// }
/// ```
#[macro_export]
macro_rules! try_left {
($expr:expr) => {
match $expr {
$crate::Left(val) => val,
$crate::Right(err) => return $crate::Right(::core::convert::From::from(err)),
}
};
}
/// Dual to [`try_left!`], see its documentation for more information.
#[macro_export]
macro_rules! try_right {
($expr:expr) => {
match $expr {
$crate::Left(err) => return $crate::Left(::core::convert::From::from(err)),
$crate::Right(val) => val,
}
};
}
macro_rules! map_either {
($value:expr, $pattern:pat => $result:expr) => {
match $value {
Left($pattern) => Left($result),
Right($pattern) => Right($result),
}
};
}
mod iterator;
pub use self::iterator::IterEither;
mod into_either;
pub use self::into_either::IntoEither;
impl<L: Clone, R: Clone> Clone for Either<L, R> {
fn clone(&self) -> Self {
match self {
Left(inner) => Left(inner.clone()),
Right(inner) => Right(inner.clone()),
}
}
fn clone_from(&mut self, source: &Self) {
match (self, source) {
(Left(dest), Left(source)) => dest.clone_from(source),
(Right(dest), Right(source)) => dest.clone_from(source),
(dest, source) => *dest = source.clone(),
}
}
}
impl<L, R> Either<L, R> {
/// Return true if the value is the `Left` variant.
///
/// ```
/// use either::*;
///
/// let values = [Left(1), Right("the right value")];
/// assert_eq!(values[0].is_left(), true);
/// assert_eq!(values[1].is_left(), false);
/// ```
pub fn is_left(&self) -> bool {
match *self {
Left(_) => true,
Right(_) => false,
}
}
/// Return true if the value is the `Right` variant.
///
/// ```
/// use either::*;
///
/// let values = [Left(1), Right("the right value")];
/// assert_eq!(values[0].is_right(), false);
/// assert_eq!(values[1].is_right(), true);
/// ```
pub fn is_right(&self) -> bool {
!self.is_left()
}
/// Convert the left side of `Either<L, R>` to an `Option<L>`.
///
/// ```
/// use either::*;
///
/// let left: Either<_, ()> = Left("some value");
/// assert_eq!(left.left(), Some("some value"));
///
/// let right: Either<(), _> = Right(321);
/// assert_eq!(right.left(), None);
/// ```
pub fn left(self) -> Option<L> {
match self {
Left(l) => Some(l),
Right(_) => None,
}
}
/// Convert the right side of `Either<L, R>` to an `Option<R>`.
///
/// ```
/// use either::*;
///
/// let left: Either<_, ()> = Left("some value");
/// assert_eq!(left.right(), None);
///
/// let right: Either<(), _> = Right(321);
/// assert_eq!(right.right(), Some(321));
/// ```
pub fn right(self) -> Option<R> {
match self {
Left(_) => None,
Right(r) => Some(r),
}
}
/// Convert `&Either<L, R>` to `Either<&L, &R>`.
///
/// ```
/// use either::*;
///
/// let left: Either<_, ()> = Left("some value");
/// assert_eq!(left.as_ref(), Left(&"some value"));
///
/// let right: Either<(), _> = Right("some value");
/// assert_eq!(right.as_ref(), Right(&"some value"));
/// ```
pub fn as_ref(&self) -> Either<&L, &R> {
match *self {
Left(ref inner) => Left(inner),
Right(ref inner) => Right(inner),
}
}
/// Convert `&mut Either<L, R>` to `Either<&mut L, &mut R>`.
///
/// ```
/// use either::*;
///
/// fn mutate_left(value: &mut Either<u32, u32>) {
/// if let Some(l) = value.as_mut().left() {
/// *l = 999;
/// }
/// }
///
/// let mut left = Left(123);
/// let mut right = Right(123);
/// mutate_left(&mut left);
/// mutate_left(&mut right);
/// assert_eq!(left, Left(999));
/// assert_eq!(right, Right(123));
/// ```
pub fn as_mut(&mut self) -> Either<&mut L, &mut R> {
match *self {
Left(ref mut inner) => Left(inner),
Right(ref mut inner) => Right(inner),
}
}
/// Convert `Pin<&Either<L, R>>` to `Either<Pin<&L>, Pin<&R>>`,
/// pinned projections of the inner variants.
pub fn as_pin_ref(self: Pin<&Self>) -> Either<Pin<&L>, Pin<&R>> {
// SAFETY: We can use `new_unchecked` because the `inner` parts are
// guaranteed to be pinned, as they come from `self` which is pinned.
unsafe {
match *Pin::get_ref(self) {
Left(ref inner) => Left(Pin::new_unchecked(inner)),
Right(ref inner) => Right(Pin::new_unchecked(inner)),
}
}
}
/// Convert `Pin<&mut Either<L, R>>` to `Either<Pin<&mut L>, Pin<&mut R>>`,
/// pinned projections of the inner variants.
pub fn as_pin_mut(self: Pin<&mut Self>) -> Either<Pin<&mut L>, Pin<&mut R>> {
// SAFETY: `get_unchecked_mut` is fine because we don't move anything.
// We can use `new_unchecked` because the `inner` parts are guaranteed
// to be pinned, as they come from `self` which is pinned, and we never
// offer an unpinned `&mut L` or `&mut R` through `Pin<&mut Self>`. We
// also don't have an implementation of `Drop`, nor manual `Unpin`.
unsafe {
match *Pin::get_unchecked_mut(self) {
Left(ref mut inner) => Left(Pin::new_unchecked(inner)),
Right(ref mut inner) => Right(Pin::new_unchecked(inner)),
}
}
}
/// Convert `Either<L, R>` to `Either<R, L>`.
///
/// ```
/// use either::*;
///
/// let left: Either<_, ()> = Left(123);
/// assert_eq!(left.flip(), Right(123));
///
/// let right: Either<(), _> = Right("some value");
/// assert_eq!(right.flip(), Left("some value"));
/// ```
pub fn flip(self) -> Either<R, L> {
match self {
Left(l) => Right(l),
Right(r) => Left(r),
}
}
/// Apply the function `f` on the value in the `Left` variant if it is present rewrapping the
/// result in `Left`.
///
/// ```
/// use either::*;
///
/// let left: Either<_, u32> = Left(123);
/// assert_eq!(left.map_left(|x| x * 2), Left(246));
///
/// let right: Either<u32, _> = Right(123);
/// assert_eq!(right.map_left(|x| x * 2), Right(123));
/// ```
pub fn map_left<F, M>(self, f: F) -> Either<M, R>
where
F: FnOnce(L) -> M,
{
match self {
Left(l) => Left(f(l)),
Right(r) => Right(r),
}
}
/// Apply the function `f` on the value in the `Right` variant if it is present rewrapping the
/// result in `Right`.
///
/// ```
/// use either::*;
///
/// let left: Either<_, u32> = Left(123);
/// assert_eq!(left.map_right(|x| x * 2), Left(123));
///
/// let right: Either<u32, _> = Right(123);
/// assert_eq!(right.map_right(|x| x * 2), Right(246));
/// ```
pub fn map_right<F, S>(self, f: F) -> Either<L, S>
where
F: FnOnce(R) -> S,
{
match self {
Left(l) => Left(l),
Right(r) => Right(f(r)),
}
}
/// Apply the functions `f` and `g` to the `Left` and `Right` variants
/// respectively. This is equivalent to
/// [bimap](https://hackage.haskell.org/package/bifunctors-5/docs/Data-Bifunctor.html)
/// in functional programming.
///
/// ```
/// use either::*;
///
/// let f = |s: String| s.len();
/// let g = |u: u8| u.to_string();
///
/// let left: Either<String, u8> = Left("loopy".into());
/// assert_eq!(left.map_either(f, g), Left(5));
///
/// let right: Either<String, u8> = Right(42);
/// assert_eq!(right.map_either(f, g), Right("42".into()));
/// ```
pub fn map_either<F, G, M, S>(self, f: F, g: G) -> Either<M, S>
where
F: FnOnce(L) -> M,
G: FnOnce(R) -> S,
{
match self {
Left(l) => Left(f(l)),
Right(r) => Right(g(r)),
}
}
/// Similar to [`map_either`][Self::map_either], with an added context `ctx` accessible to
/// both functions.
///
/// ```
/// use either::*;
///
/// let mut sum = 0;
///
/// // Both closures want to update the same value, so pass it as context.
/// let mut f = |sum: &mut usize, s: String| { *sum += s.len(); s.to_uppercase() };
/// let mut g = |sum: &mut usize, u: usize| { *sum += u; u.to_string() };
///
/// let left: Either<String, usize> = Left("loopy".into());
/// assert_eq!(left.map_either_with(&mut sum, &mut f, &mut g), Left("LOOPY".into()));
///
/// let right: Either<String, usize> = Right(42);
/// assert_eq!(right.map_either_with(&mut sum, &mut f, &mut g), Right("42".into()));
///
/// assert_eq!(sum, 47);
/// ```
pub fn map_either_with<Ctx, F, G, M, S>(self, ctx: Ctx, f: F, g: G) -> Either<M, S>
where
F: FnOnce(Ctx, L) -> M,
G: FnOnce(Ctx, R) -> S,
{
match self {
Left(l) => Left(f(ctx, l)),
Right(r) => Right(g(ctx, r)),
}
}
/// Apply one of two functions depending on contents, unifying their result. If the value is
/// `Left(L)` then the first function `f` is applied; if it is `Right(R)` then the second
/// function `g` is applied.
///
/// ```
/// use either::*;
///
/// fn square(n: u32) -> i32 { (n * n) as i32 }
/// fn negate(n: i32) -> i32 { -n }
///
/// let left: Either<u32, i32> = Left(4);
/// assert_eq!(left.either(square, negate), 16);
///
/// let right: Either<u32, i32> = Right(-4);
/// assert_eq!(right.either(square, negate), 4);
/// ```
pub fn either<F, G, T>(self, f: F, g: G) -> T
where
F: FnOnce(L) -> T,
G: FnOnce(R) -> T,
{
match self {
Left(l) => f(l),
Right(r) => g(r),
}
}
/// Like [`either`][Self::either], but provide some context to whichever of the
/// functions ends up being called.
///
/// ```
/// // In this example, the context is a mutable reference
/// use either::*;
///
/// let mut result = Vec::new();
///
/// let values = vec![Left(2), Right(2.7)];
///
/// for value in values {
/// value.either_with(&mut result,
/// |ctx, integer| ctx.push(integer),
/// |ctx, real| ctx.push(f64::round(real) as i32));
/// }
///
/// assert_eq!(result, vec![2, 3]);
/// ```
pub fn either_with<Ctx, F, G, T>(self, ctx: Ctx, f: F, g: G) -> T
where
F: FnOnce(Ctx, L) -> T,
G: FnOnce(Ctx, R) -> T,
{
match self {
Left(l) => f(ctx, l),
Right(r) => g(ctx, r),
}
}
/// Apply the function `f` on the value in the `Left` variant if it is present.
///
/// ```
/// use either::*;
///
/// let left: Either<_, u32> = Left(123);
/// assert_eq!(left.left_and_then::<_,()>(|x| Right(x * 2)), Right(246));
///
/// let right: Either<u32, _> = Right(123);
/// assert_eq!(right.left_and_then(|x| Right::<(), _>(x * 2)), Right(123));
/// ```
pub fn left_and_then<F, S>(self, f: F) -> Either<S, R>
where
F: FnOnce(L) -> Either<S, R>,
{
match self {
Left(l) => f(l),
Right(r) => Right(r),
}
}
/// Apply the function `f` on the value in the `Right` variant if it is present.
///
/// ```
/// use either::*;
///
/// let left: Either<_, u32> = Left(123);
/// assert_eq!(left.right_and_then(|x| Right(x * 2)), Left(123));
///
/// let right: Either<u32, _> = Right(123);
/// assert_eq!(right.right_and_then(|x| Right(x * 2)), Right(246));
/// ```
pub fn right_and_then<F, S>(self, f: F) -> Either<L, S>
where
F: FnOnce(R) -> Either<L, S>,
{
match self {
Left(l) => Left(l),
Right(r) => f(r),
}
}
/// Convert the inner value to an iterator.
///
/// This requires the `Left` and `Right` iterators to have the same item type.
/// See [`factor_into_iter`][Either::factor_into_iter] to iterate different types.
///
/// ```
/// use either::*;
///
/// let left: Either<_, Vec<u32>> = Left(vec![1, 2, 3, 4, 5]);
/// let mut right: Either<Vec<u32>, _> = Right(vec![]);
/// right.extend(left.into_iter());
/// assert_eq!(right, Right(vec![1, 2, 3, 4, 5]));
/// ```
#[allow(clippy::should_implement_trait)]
pub fn into_iter(self) -> Either<L::IntoIter, R::IntoIter>
where
L: IntoIterator,
R: IntoIterator<Item = L::Item>,
{
map_either!(self, inner => inner.into_iter())
}
/// Borrow the inner value as an iterator.
///
/// This requires the `Left` and `Right` iterators to have the same item type.
/// See [`factor_iter`][Either::factor_iter] to iterate different types.
///
/// ```
/// use either::*;
///
/// let left: Either<_, &[u32]> = Left(vec![2, 3]);
/// let mut right: Either<Vec<u32>, _> = Right(&[4, 5][..]);
/// let mut all = vec![1];
/// all.extend(left.iter());
/// all.extend(right.iter());
/// assert_eq!(all, vec![1, 2, 3, 4, 5]);
/// ```
pub fn iter(&self) -> Either<<&L as IntoIterator>::IntoIter, <&R as IntoIterator>::IntoIter>
where
for<'a> &'a L: IntoIterator,
for<'a> &'a R: IntoIterator<Item = <&'a L as IntoIterator>::Item>,
{
map_either!(self, inner => inner.into_iter())
}
/// Mutably borrow the inner value as an iterator.
///
/// This requires the `Left` and `Right` iterators to have the same item type.
/// See [`factor_iter_mut`][Either::factor_iter_mut] to iterate different types.
///
/// ```
/// use either::*;
///
/// let mut left: Either<_, &mut [u32]> = Left(vec![2, 3]);
/// for l in left.iter_mut() {
/// *l *= *l
/// }
/// assert_eq!(left, Left(vec![4, 9]));
///
/// let mut inner = [4, 5];
/// let mut right: Either<Vec<u32>, _> = Right(&mut inner[..]);
/// for r in right.iter_mut() {
/// *r *= *r
/// }
/// assert_eq!(inner, [16, 25]);
/// ```
pub fn iter_mut(
&mut self,
) -> Either<<&mut L as IntoIterator>::IntoIter, <&mut R as IntoIterator>::IntoIter>
where
for<'a> &'a mut L: IntoIterator,
for<'a> &'a mut R: IntoIterator<Item = <&'a mut L as IntoIterator>::Item>,
{
map_either!(self, inner => inner.into_iter())
}
/// Converts an `Either` of `Iterator`s to be an `Iterator` of `Either`s
///
/// Unlike [`into_iter`][Either::into_iter], this does not require the
/// `Left` and `Right` iterators to have the same item type.
///
/// ```
/// use either::*;
/// let left: Either<_, Vec<u8>> = Left(&["hello"]);
/// assert_eq!(left.factor_into_iter().next(), Some(Left(&"hello")));
/// let right: Either<&[&str], _> = Right(vec![0, 1]);
/// assert_eq!(right.factor_into_iter().collect::<Vec<_>>(), vec![Right(0), Right(1)]);
///
/// ```
// TODO(MSRV): doc(alias) was stabilized in Rust 1.48
// #[doc(alias = "transpose")]
pub fn factor_into_iter(self) -> IterEither<L::IntoIter, R::IntoIter>
where
L: IntoIterator,
R: IntoIterator,
{
IterEither::new(map_either!(self, inner => inner.into_iter()))
}
/// Borrows an `Either` of `Iterator`s to be an `Iterator` of `Either`s
///
/// Unlike [`iter`][Either::iter], this does not require the
/// `Left` and `Right` iterators to have the same item type.
///
/// ```
/// use either::*;
/// let left: Either<_, Vec<u8>> = Left(["hello"]);
/// assert_eq!(left.factor_iter().next(), Some(Left(&"hello")));
/// let right: Either<[&str; 2], _> = Right(vec![0, 1]);
/// assert_eq!(right.factor_iter().collect::<Vec<_>>(), vec![Right(&0), Right(&1)]);
///
/// ```
pub fn factor_iter(
&self,
) -> IterEither<<&L as IntoIterator>::IntoIter, <&R as IntoIterator>::IntoIter>
where
for<'a> &'a L: IntoIterator,
for<'a> &'a R: IntoIterator,
{
IterEither::new(map_either!(self, inner => inner.into_iter()))
}
/// Mutably borrows an `Either` of `Iterator`s to be an `Iterator` of `Either`s
///
/// Unlike [`iter_mut`][Either::iter_mut], this does not require the
/// `Left` and `Right` iterators to have the same item type.
///
/// ```
/// use either::*;
/// let mut left: Either<_, Vec<u8>> = Left(["hello"]);
/// left.factor_iter_mut().for_each(|x| *x.unwrap_left() = "goodbye");
/// assert_eq!(left, Left(["goodbye"]));
/// let mut right: Either<[&str; 2], _> = Right(vec![0, 1, 2]);
/// right.factor_iter_mut().for_each(|x| if let Right(r) = x { *r = -*r; });
/// assert_eq!(right, Right(vec![0, -1, -2]));
///
/// ```
pub fn factor_iter_mut(
&mut self,
) -> IterEither<<&mut L as IntoIterator>::IntoIter, <&mut R as IntoIterator>::IntoIter>
where
for<'a> &'a mut L: IntoIterator,
for<'a> &'a mut R: IntoIterator,
{
IterEither::new(map_either!(self, inner => inner.into_iter()))
}
/// Return left value or given value
///
/// Arguments passed to `left_or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use
/// [`left_or_else`][Self::left_or_else], which is lazily evaluated.
///
/// # Examples
///
/// ```
/// # use either::*;
/// let left: Either<&str, &str> = Left("left");
/// assert_eq!(left.left_or("foo"), "left");
///
/// let right: Either<&str, &str> = Right("right");
/// assert_eq!(right.left_or("left"), "left");
/// ```
pub fn left_or(self, other: L) -> L {
match self {
Either::Left(l) => l,
Either::Right(_) => other,
}
}
/// Return left or a default
///
/// # Examples
///
/// ```
/// # use either::*;
/// let left: Either<String, u32> = Left("left".to_string());
/// assert_eq!(left.left_or_default(), "left");
///
/// let right: Either<String, u32> = Right(42);
/// assert_eq!(right.left_or_default(), String::default());
/// ```
pub fn left_or_default(self) -> L
where
L: Default,
{
match self {
Either::Left(l) => l,
Either::Right(_) => L::default(),
}
}
/// Returns left value or computes it from a closure
///
/// # Examples
///
/// ```
/// # use either::*;
/// let left: Either<String, u32> = Left("3".to_string());
/// assert_eq!(left.left_or_else(|_| unreachable!()), "3");
///
/// let right: Either<String, u32> = Right(3);
/// assert_eq!(right.left_or_else(|x| x.to_string()), "3");
/// ```
pub fn left_or_else<F>(self, f: F) -> L
where
F: FnOnce(R) -> L,
{
match self {
Either::Left(l) => l,
Either::Right(r) => f(r),
}
}
/// Return right value or given value
///
/// Arguments passed to `right_or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use
/// [`right_or_else`][Self::right_or_else], which is lazily evaluated.
///
/// # Examples
///
/// ```
/// # use either::*;
/// let right: Either<&str, &str> = Right("right");
/// assert_eq!(right.right_or("foo"), "right");
///
/// let left: Either<&str, &str> = Left("left");
/// assert_eq!(left.right_or("right"), "right");
/// ```
pub fn right_or(self, other: R) -> R {
match self {
Either::Left(_) => other,
Either::Right(r) => r,
}
}
/// Return right or a default
///
/// # Examples
///
/// ```
/// # use either::*;
/// let left: Either<String, u32> = Left("left".to_string());
/// assert_eq!(left.right_or_default(), u32::default());
///
/// let right: Either<String, u32> = Right(42);
/// assert_eq!(right.right_or_default(), 42);
/// ```
pub fn right_or_default(self) -> R
where
R: Default,
{
match self {
Either::Left(_) => R::default(),
Either::Right(r) => r,
}
}
/// Returns right value or computes it from a closure
///
/// # Examples
///
/// ```
/// # use either::*;
/// let left: Either<String, u32> = Left("3".to_string());
/// assert_eq!(left.right_or_else(|x| x.parse().unwrap()), 3);
///
/// let right: Either<String, u32> = Right(3);
/// assert_eq!(right.right_or_else(|_| unreachable!()), 3);
/// ```
pub fn right_or_else<F>(self, f: F) -> R
where
F: FnOnce(L) -> R,
{
match self {
Either::Left(l) => f(l),
Either::Right(r) => r,
}
}
/// Returns the left value
///
/// # Examples
///
/// ```
/// # use either::*;
/// let left: Either<_, ()> = Left(3);
/// assert_eq!(left.unwrap_left(), 3);
/// ```
///
/// # Panics
///
/// When `Either` is a `Right` value
///
/// ```should_panic
/// # use either::*;
/// let right: Either<(), _> = Right(3);
/// right.unwrap_left();
/// ```
pub fn unwrap_left(self) -> L
where
R: core::fmt::Debug,
{
match self {
Either::Left(l) => l,
Either::Right(r) => {
panic!("called `Either::unwrap_left()` on a `Right` value: {:?}", r)
}
}
}
/// Returns the right value
///
/// # Examples
///
/// ```
/// # use either::*;
/// let right: Either<(), _> = Right(3);
/// assert_eq!(right.unwrap_right(), 3);
/// ```
///
/// # Panics
///
/// When `Either` is a `Left` value
///
/// ```should_panic
/// # use either::*;
/// let left: Either<_, ()> = Left(3);
/// left.unwrap_right();
/// ```
pub fn unwrap_right(self) -> R
where
L: core::fmt::Debug,
{
match self {
Either::Right(r) => r,
Either::Left(l) => panic!("called `Either::unwrap_right()` on a `Left` value: {:?}", l),
}
}
/// Returns the left value
///
/// # Examples
///
/// ```
/// # use either::*;
/// let left: Either<_, ()> = Left(3);
/// assert_eq!(left.expect_left("value was Right"), 3);
/// ```
///
/// # Panics
///
/// When `Either` is a `Right` value
///
/// ```should_panic
/// # use either::*;
/// let right: Either<(), _> = Right(3);
/// right.expect_left("value was Right");
/// ```
pub fn expect_left(self, msg: &str) -> L
where
R: core::fmt::Debug,
{
match self {
Either::Left(l) => l,
Either::Right(r) => panic!("{}: {:?}", msg, r),
}
}
/// Returns the right value
///
/// # Examples
///
/// ```
/// # use either::*;
/// let right: Either<(), _> = Right(3);
/// assert_eq!(right.expect_right("value was Left"), 3);
/// ```
///
/// # Panics
///
/// When `Either` is a `Left` value
///
/// ```should_panic
/// # use either::*;
/// let left: Either<_, ()> = Left(3);
/// left.expect_right("value was Right");
/// ```
pub fn expect_right(self, msg: &str) -> R
where
L: core::fmt::Debug,
{
match self {
Either::Right(r) => r,
Either::Left(l) => panic!("{}: {:?}", msg, l),
}
}
/// Convert the contained value into `T`
///
/// # Examples
///
/// ```
/// # use either::*;
/// // Both u16 and u32 can be converted to u64.
/// let left: Either<u16, u32> = Left(3u16);
/// assert_eq!(left.either_into::<u64>(), 3u64);
/// let right: Either<u16, u32> = Right(7u32);
/// assert_eq!(right.either_into::<u64>(), 7u64);
/// ```
pub fn either_into<T>(self) -> T
where
L: Into<T>,
R: Into<T>,
{
match self {
Either::Left(l) => l.into(),
Either::Right(r) => r.into(),
}
}
}
impl<L, R> Either<Option<L>, Option<R>> {
/// Factors out `None` from an `Either` of [`Option`].
///
/// ```
/// use either::*;
/// let left: Either<_, Option<String>> = Left(Some(vec![0]));
/// assert_eq!(left.factor_none(), Some(Left(vec![0])));
///
/// let right: Either<Option<Vec<u8>>, _> = Right(Some(String::new()));
/// assert_eq!(right.factor_none(), Some(Right(String::new())));
/// ```
// TODO(MSRV): doc(alias) was stabilized in Rust 1.48
// #[doc(alias = "transpose")]
pub fn factor_none(self) -> Option<Either<L, R>> {
match self {
Left(l) => l.map(Either::Left),
Right(r) => r.map(Either::Right),
}
}
}
impl<L, R, E> Either<Result<L, E>, Result<R, E>> {
/// Factors out a homogenous type from an `Either` of [`Result`].
///
/// Here, the homogeneous type is the `Err` type of the [`Result`].
///
/// ```
/// use either::*;
/// let left: Either<_, Result<String, u32>> = Left(Ok(vec![0]));
/// assert_eq!(left.factor_err(), Ok(Left(vec![0])));
///
/// let right: Either<Result<Vec<u8>, u32>, _> = Right(Ok(String::new()));
/// assert_eq!(right.factor_err(), Ok(Right(String::new())));
/// ```
// TODO(MSRV): doc(alias) was stabilized in Rust 1.48
// #[doc(alias = "transpose")]
pub fn factor_err(self) -> Result<Either<L, R>, E> {
match self {
Left(l) => l.map(Either::Left),
Right(r) => r.map(Either::Right),
}
}
}
impl<T, L, R> Either<Result<T, L>, Result<T, R>> {
/// Factors out a homogenous type from an `Either` of [`Result`].
///
/// Here, the homogeneous type is the `Ok` type of the [`Result`].
///
/// ```
/// use either::*;
/// let left: Either<_, Result<u32, String>> = Left(Err(vec![0]));
/// assert_eq!(left.factor_ok(), Err(Left(vec![0])));
///
/// let right: Either<Result<u32, Vec<u8>>, _> = Right(Err(String::new()));
/// assert_eq!(right.factor_ok(), Err(Right(String::new())));
/// ```
// TODO(MSRV): doc(alias) was stabilized in Rust 1.48
// #[doc(alias = "transpose")]
pub fn factor_ok(self) -> Result<T, Either<L, R>> {
match self {
Left(l) => l.map_err(Either::Left),
Right(r) => r.map_err(Either::Right),
}
}
}
impl<T, L, R> Either<(T, L), (T, R)> {
/// Factor out a homogeneous type from an either of pairs.
///
/// Here, the homogeneous type is the first element of the pairs.
///
/// ```
/// use either::*;
/// let left: Either<_, (u32, String)> = Left((123, vec![0]));
/// assert_eq!(left.factor_first().0, 123);
///
/// let right: Either<(u32, Vec<u8>), _> = Right((123, String::new()));
/// assert_eq!(right.factor_first().0, 123);
/// ```
pub fn factor_first(self) -> (T, Either<L, R>) {
match self {
Left((t, l)) => (t, Left(l)),
Right((t, r)) => (t, Right(r)),
}
}
}
impl<T, L, R> Either<(L, T), (R, T)> {
/// Factor out a homogeneous type from an either of pairs.
///
/// Here, the homogeneous type is the second element of the pairs.
///
/// ```
/// use either::*;
/// let left: Either<_, (String, u32)> = Left((vec![0], 123));
/// assert_eq!(left.factor_second().1, 123);
///
/// let right: Either<(Vec<u8>, u32), _> = Right((String::new(), 123));
/// assert_eq!(right.factor_second().1, 123);
/// ```
pub fn factor_second(self) -> (Either<L, R>, T) {
match self {
Left((l, t)) => (Left(l), t),
Right((r, t)) => (Right(r), t),
}
}
}
impl<T> Either<T, T> {
/// Extract the value of an either over two equivalent types.
///
/// ```
/// use either::*;
///
/// let left: Either<_, u32> = Left(123);
/// assert_eq!(left.into_inner(), 123);
///
/// let right: Either<u32, _> = Right(123);
/// assert_eq!(right.into_inner(), 123);
/// ```
pub fn into_inner(self) -> T {
for_both!(self, inner => inner)
}
/// Map `f` over the contained value and return the result in the
/// corresponding variant.
///
/// ```
/// use either::*;
///
/// let value: Either<_, i32> = Right(42);
///
/// let other = value.map(|x| x * 2);
/// assert_eq!(other, Right(84));
/// ```
pub fn map<F, M>(self, f: F) -> Either<M, M>
where
F: FnOnce(T) -> M,
{
match self {
Left(l) => Left(f(l)),
Right(r) => Right(f(r)),
}
}
}
impl<L, R> Either<&L, &R> {
/// Maps an `Either<&L, &R>` to an `Either<L, R>` by cloning the contents of
/// either branch.
pub fn cloned(self) -> Either<L, R>
where
L: Clone,
R: Clone,
{
match self {
Self::Left(l) => Either::Left(l.clone()),
Self::Right(r) => Either::Right(r.clone()),
}
}
/// Maps an `Either<&L, &R>` to an `Either<L, R>` by copying the contents of
/// either branch.
pub fn copied(self) -> Either<L, R>
where
L: Copy,
R: Copy,
{
match self {
Self::Left(l) => Either::Left(*l),
Self::Right(r) => Either::Right(*r),
}
}
}
impl<L, R> Either<&mut L, &mut R> {
/// Maps an `Either<&mut L, &mut R>` to an `Either<L, R>` by cloning the contents of
/// either branch.
pub fn cloned(self) -> Either<L, R>
where
L: Clone,
R: Clone,
{
match self {
Self::Left(l) => Either::Left(l.clone()),
Self::Right(r) => Either::Right(r.clone()),
}
}
/// Maps an `Either<&mut L, &mut R>` to an `Either<L, R>` by copying the contents of
/// either branch.
pub fn copied(self) -> Either<L, R>
where
L: Copy,
R: Copy,
{
match self {
Self::Left(l) => Either::Left(*l),
Self::Right(r) => Either::Right(*r),
}
}
}
/// Convert from `Result` to `Either` with `Ok => Right` and `Err => Left`.
impl<L, R> From<Result<R, L>> for Either<L, R> {
fn from(r: Result<R, L>) -> Self {
match r {
Err(e) => Left(e),
Ok(o) => Right(o),
}
}
}
/// Convert from `Either` to `Result` with `Right => Ok` and `Left => Err`.
#[allow(clippy::from_over_into)] // From requires RFC 2451, Rust 1.41
impl<L, R> Into<Result<R, L>> for Either<L, R> {
fn into(self) -> Result<R, L> {
match self {
Left(l) => Err(l),
Right(r) => Ok(r),
}
}
}
/// `Either<L, R>` is a future if both `L` and `R` are futures.
impl<L, R> Future for Either<L, R>
where
L: Future,
R: Future<Output = L::Output>,
{
type Output = L::Output;
fn poll(
self: Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
for_both!(self.as_pin_mut(), inner => inner.poll(cx))
}
}
#[cfg(any(test, feature = "use_std"))]
/// `Either<L, R>` implements `Read` if both `L` and `R` do.
///
/// Requires crate feature `"use_std"`
impl<L, R> Read for Either<L, R>
where
L: Read,
R: Read,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
for_both!(*self, ref mut inner => inner.read(buf))
}
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
for_both!(*self, ref mut inner => inner.read_exact(buf))
}
fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> io::Result<usize> {
for_both!(*self, ref mut inner => inner.read_to_end(buf))
}
fn read_to_string(&mut self, buf: &mut std::string::String) -> io::Result<usize> {
for_both!(*self, ref mut inner => inner.read_to_string(buf))
}
}
#[cfg(any(test, feature = "use_std"))]
/// `Either<L, R>` implements `Seek` if both `L` and `R` do.
///
/// Requires crate feature `"use_std"`
impl<L, R> Seek for Either<L, R>
where
L: Seek,
R: Seek,
{
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
for_both!(*self, ref mut inner => inner.seek(pos))
}
}
#[cfg(any(test, feature = "use_std"))]
/// Requires crate feature `"use_std"`
impl<L, R> BufRead for Either<L, R>
where
L: BufRead,
R: BufRead,
{
fn fill_buf(&mut self) -> io::Result<&[u8]> {
for_both!(*self, ref mut inner => inner.fill_buf())
}
fn consume(&mut self, amt: usize) {
for_both!(*self, ref mut inner => inner.consume(amt))
}
fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> io::Result<usize> {
for_both!(*self, ref mut inner => inner.read_until(byte, buf))
}
fn read_line(&mut self, buf: &mut std::string::String) -> io::Result<usize> {
for_both!(*self, ref mut inner => inner.read_line(buf))
}
}
#[cfg(any(test, feature = "use_std"))]
/// `Either<L, R>` implements `Write` if both `L` and `R` do.
///
/// Requires crate feature `"use_std"`
impl<L, R> Write for Either<L, R>
where
L: Write,
R: Write,
{
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
for_both!(*self, ref mut inner => inner.write(buf))
}
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
for_both!(*self, ref mut inner => inner.write_all(buf))
}
fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> {
for_both!(*self, ref mut inner => inner.write_fmt(fmt))
}
fn flush(&mut self) -> io::Result<()> {
for_both!(*self, ref mut inner => inner.flush())
}
}
impl<L, R, Target> AsRef<Target> for Either<L, R>
where
L: AsRef<Target>,
R: AsRef<Target>,
{
fn as_ref(&self) -> &Target {
for_both!(*self, ref inner => inner.as_ref())
}
}
macro_rules! impl_specific_ref_and_mut {
($t:ty, $($attr:meta),* ) => {
$(#[$attr])*
impl<L, R> AsRef<$t> for Either<L, R>
where L: AsRef<$t>, R: AsRef<$t>
{
fn as_ref(&self) -> &$t {
for_both!(*self, ref inner => inner.as_ref())
}
}
$(#[$attr])*
impl<L, R> AsMut<$t> for Either<L, R>
where L: AsMut<$t>, R: AsMut<$t>
{
fn as_mut(&mut self) -> &mut $t {
for_both!(*self, ref mut inner => inner.as_mut())
}
}
};
}
impl_specific_ref_and_mut!(str,);
impl_specific_ref_and_mut!(
::std::path::Path,
cfg(feature = "use_std"),
doc = "Requires crate feature `use_std`."
);
impl_specific_ref_and_mut!(
::std::ffi::OsStr,
cfg(feature = "use_std"),
doc = "Requires crate feature `use_std`."
);
impl_specific_ref_and_mut!(
::std::ffi::CStr,
cfg(feature = "use_std"),
doc = "Requires crate feature `use_std`."
);
impl<L, R, Target> AsRef<[Target]> for Either<L, R>
where
L: AsRef<[Target]>,
R: AsRef<[Target]>,
{
fn as_ref(&self) -> &[Target] {
for_both!(*self, ref inner => inner.as_ref())
}
}
impl<L, R, Target> AsMut<Target> for Either<L, R>
where
L: AsMut<Target>,
R: AsMut<Target>,
{
fn as_mut(&mut self) -> &mut Target {
for_both!(*self, ref mut inner => inner.as_mut())
}
}
impl<L, R, Target> AsMut<[Target]> for Either<L, R>
where
L: AsMut<[Target]>,
R: AsMut<[Target]>,
{
fn as_mut(&mut self) -> &mut [Target] {
for_both!(*self, ref mut inner => inner.as_mut())
}
}
impl<L, R> Deref for Either<L, R>
where
L: Deref,
R: Deref<Target = L::Target>,
{
type Target = L::Target;
fn deref(&self) -> &Self::Target {
for_both!(*self, ref inner => &**inner)
}
}
impl<L, R> DerefMut for Either<L, R>
where
L: DerefMut,
R: DerefMut<Target = L::Target>,
{
fn deref_mut(&mut self) -> &mut Self::Target {
for_both!(*self, ref mut inner => &mut *inner)
}
}
#[cfg(any(test, feature = "use_std"))]
/// `Either` implements `Error` if *both* `L` and `R` implement it.
///
/// Requires crate feature `"use_std"`
impl<L, R> Error for Either<L, R>
where
L: Error,
R: Error,
{
fn source(&self) -> Option<&(dyn Error + 'static)> {
for_both!(*self, ref inner => inner.source())
}
#[allow(deprecated)]
fn description(&self) -> &str {
for_both!(*self, ref inner => inner.description())
}
#[allow(deprecated)]
fn cause(&self) -> Option<&dyn Error> {
for_both!(*self, ref inner => inner.cause())
}
}
impl<L, R> fmt::Display for Either<L, R>
where
L: fmt::Display,
R: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for_both!(*self, ref inner => inner.fmt(f))
}
}
#[test]
fn basic() {
let mut e = Left(2);
let r = Right(2);
assert_eq!(e, Left(2));
e = r;
assert_eq!(e, Right(2));
assert_eq!(e.left(), None);
assert_eq!(e.right(), Some(2));
assert_eq!(e.as_ref().right(), Some(&2));
assert_eq!(e.as_mut().right(), Some(&mut 2));
}
#[test]
fn macros() {
use std::string::String;
fn a() -> Either<u32, u32> {
let x: u32 = try_left!(Right(1337u32));
Left(x * 2)
}
assert_eq!(a(), Right(1337));
fn b() -> Either<String, &'static str> {
Right(try_right!(Left("foo bar")))
}
assert_eq!(b(), Left(String::from("foo bar")));
}
#[test]
fn deref() {
use std::string::String;
fn is_str(_: &str) {}
let value: Either<String, &str> = Left(String::from("test"));
is_str(&*value);
}
#[test]
fn iter() {
let x = 3;
let mut iter = match x {
3 => Left(0..10),
_ => Right(17..),
};
assert_eq!(iter.next(), Some(0));
assert_eq!(iter.count(), 9);
}
#[test]
fn seek() {
use std::io;
let use_empty = false;
let mut mockdata = [0x00; 256];
for i in 0..256 {
mockdata[i] = i as u8;
}
let mut reader = if use_empty {
// Empty didn't impl Seek until Rust 1.51
Left(io::Cursor::new([]))
} else {
Right(io::Cursor::new(&mockdata[..]))
};
let mut buf = [0u8; 16];
assert_eq!(reader.read(&mut buf).unwrap(), buf.len());
assert_eq!(buf, mockdata[..buf.len()]);
// the first read should advance the cursor and return the next 16 bytes thus the `ne`
assert_eq!(reader.read(&mut buf).unwrap(), buf.len());
assert_ne!(buf, mockdata[..buf.len()]);
// if the seek operation fails it should read 16..31 instead of 0..15
reader.seek(io::SeekFrom::Start(0)).unwrap();
assert_eq!(reader.read(&mut buf).unwrap(), buf.len());
assert_eq!(buf, mockdata[..buf.len()]);
}
#[test]
fn read_write() {
use std::io;
let use_stdio = false;
let mockdata = [0xff; 256];
let mut reader = if use_stdio {
Left(io::stdin())
} else {
Right(&mockdata[..])
};
let mut buf = [0u8; 16];
assert_eq!(reader.read(&mut buf).unwrap(), buf.len());
assert_eq!(&buf, &mockdata[..buf.len()]);
let mut mockbuf = [0u8; 256];
let mut writer = if use_stdio {
Left(io::stdout())
} else {
Right(&mut mockbuf[..])
};
let buf = [1u8; 16];
assert_eq!(writer.write(&buf).unwrap(), buf.len());
}
#[test]
fn error() {
let invalid_utf8 = b"\xff";
#[allow(invalid_from_utf8)]
let res = if let Err(error) = ::std::str::from_utf8(invalid_utf8) {
Err(Left(error))
} else if let Err(error) = "x".parse::<i32>() {
Err(Right(error))
} else {
Ok(())
};
assert!(res.is_err());
#[allow(deprecated)]
res.unwrap_err().description(); // make sure this can be called
}
/// A helper macro to check if AsRef and AsMut are implemented for a given type.
macro_rules! check_t {
($t:ty) => {{
fn check_ref<T: AsRef<$t>>() {}
fn propagate_ref<T1: AsRef<$t>, T2: AsRef<$t>>() {
check_ref::<Either<T1, T2>>()
}
fn check_mut<T: AsMut<$t>>() {}
fn propagate_mut<T1: AsMut<$t>, T2: AsMut<$t>>() {
check_mut::<Either<T1, T2>>()
}
}};
}
// This "unused" method is here to ensure that compilation doesn't fail on given types.
fn _unsized_ref_propagation() {
check_t!(str);
fn check_array_ref<T: AsRef<[Item]>, Item>() {}
fn check_array_mut<T: AsMut<[Item]>, Item>() {}
fn propagate_array_ref<T1: AsRef<[Item]>, T2: AsRef<[Item]>, Item>() {
check_array_ref::<Either<T1, T2>, _>()
}
fn propagate_array_mut<T1: AsMut<[Item]>, T2: AsMut<[Item]>, Item>() {
check_array_mut::<Either<T1, T2>, _>()
}
}
// This "unused" method is here to ensure that compilation doesn't fail on given types.
#[cfg(feature = "use_std")]
fn _unsized_std_propagation() {
check_t!(::std::path::Path);
check_t!(::std::ffi::OsStr);
check_t!(::std::ffi::CStr);
}