use crate::error::{FendError, Interrupt};
use crate::num::real::{self, Real};
use crate::num::Exact;
use crate::num::{Base, FormattingStyle};
use crate::result::FResult;
use std::cmp::Ordering;
use std::ops::Neg;
use std::{fmt, io};
#[derive(Clone, Hash)]
pub(crate) struct Complex {
real: Real,
imag: Real,
}
impl fmt::Debug for Complex {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.real)?;
if !self.imag.is_definitely_zero() {
write!(f, " + {:?}i", self.imag)?;
}
Ok(())
}
}
#[derive(Copy, Clone, Eq, PartialEq)]
pub(crate) enum UseParentheses {
No,
IfComplex,
IfComplexOrFraction,
}
impl Complex {
pub(crate) fn compare<I: Interrupt>(&self, other: &Self, int: &I) -> FResult<Option<Ordering>> {
if self.imag().is_zero() && other.imag().is_zero() {
Ok(Some(self.real().compare(&other.real(), int)?))
} else {
Ok(None)
}
}
pub(crate) fn serialize(&self, write: &mut impl io::Write) -> FResult<()> {
self.real.serialize(write)?;
self.imag.serialize(write)?;
Ok(())
}
pub(crate) fn deserialize(read: &mut impl io::Read) -> FResult<Self> {
Ok(Self {
real: Real::deserialize(read)?,
imag: Real::deserialize(read)?,
})
}
pub(crate) fn try_as_usize<I: Interrupt>(self, int: &I) -> FResult<usize> {
if !self.imag.is_zero() {
return Err(FendError::ComplexToInteger);
}
self.real.try_as_usize(int)
}
pub(crate) fn try_as_i64<I: Interrupt>(self, int: &I) -> FResult<i64> {
if !self.imag.is_zero() {
return Err(FendError::ComplexToInteger);
}
self.real.try_as_i64(int)
}
#[inline]
pub(crate) fn real(&self) -> Real {
self.real.clone()
}
#[inline]
pub(crate) fn imag(&self) -> Real {
self.imag.clone()
}
pub(crate) fn conjugate(self) -> Self {
Self {
real: self.real,
imag: -self.imag,
}
}
pub(crate) fn factorial<I: Interrupt>(self, int: &I) -> FResult<Self> {
if !self.imag.is_zero() {
return Err(FendError::FactorialComplex);
}
Ok(Self {
real: self.real.factorial(int)?,
imag: self.imag,
})
}
pub(crate) fn exp<I: Interrupt>(self, int: &I) -> FResult<Exact<Self>> {
// e^(a + bi) = e^a * e^(bi) = e^a * (cos(b) + i * sin(b))
let r = self.real.exp(int)?;
let exact = r.exact;
Ok(Exact::new(
Self {
real: r.clone().mul(self.imag.clone().cos(int)?.re(), int)?.value,
imag: r.mul(self.imag.sin(int)?.re(), int)?.value,
},
exact,
))
}
fn pow_n<I: Interrupt>(self, n: usize, int: &I) -> FResult<Exact<Self>> {
if n == 0 {
return Ok(Exact::new(Self::from(1), true));
}
let mut result = Exact::new(Self::from(1), true);
let mut base = Exact::new(self, true);
let mut exp = n;
while exp > 0 {
if exp & 1 == 1 {
result = result.mul(&base, int)?;
}
base = base.clone().mul(&base, int)?;
exp >>= 1;
}
Ok(result)
}
pub(crate) fn pow<I: Interrupt>(self, rhs: Self, int: &I) -> FResult<Exact<Self>> {
if !rhs.real.is_integer() || !rhs.imag.is_integer() {
return self.frac_pow(rhs, int);
}
if self.imag.is_zero() && rhs.imag.is_zero() {
let real = self.real.pow(rhs.real, int)?;
Ok(Exact::new(
Self {
real: real.value,
imag: 0.into(),
},
real.exact,
))
} else {
let rem = rhs.clone().real.modulo(4.into(), int);
// Reduced case: (ix)^y = x^y * i^y
if self.real.is_zero() && rhs.imag.is_zero() {
if let Ok(n) = rhs.real.try_as_usize(int) {
return self.pow_n(n, int);
}
let mut result = Exact::new(
match rem.and_then(|rem| rem.try_as_usize(int)) {
Ok(0) => 1.into(),
Ok(1) => Self {
real: 0.into(),
imag: 1.into(),
},
Ok(2) => Self {
real: Real::from(1).neg(),
imag: 0.into(),
},
Ok(3) => Self {
real: 0.into(),
imag: Real::from(1).neg(),
},
Ok(_) | Err(_) => unreachable!("modulo 4 should always be 0, 1, 2, or 3"),
},
true,
);
if !self.imag.is_definitely_one() {
result = self
.imag
.pow(2.into(), int)?
.apply(Self::from)
.mul(&result, int)?;
}
return Ok(result);
}
// z^w = e^(w * ln(z))
let exp = self.ln(int)?.mul(&Exact::new(rhs, true), int)?;
Ok(exp.value.exp(int)?.combine(exp.exact))
}
}
pub(crate) fn i() -> Self {
Self {
real: 0.into(),
imag: 1.into(),
}
}
pub(crate) fn pi() -> Self {
Self {
real: Real::pi(),
imag: 0.into(),
}
}
pub(crate) fn abs<I: Interrupt>(self, int: &I) -> FResult<Exact<Real>> {
Ok(if self.imag.is_zero() {
if self.real.is_neg() {
Exact::new(-self.real, true)
} else {
Exact::new(self.real, true)
}
} else if self.real.is_zero() {
if self.imag.is_neg() {
Exact::new(-self.imag, true)
} else {
Exact::new(self.imag, true)
}
} else {
let power = self.real.pow(2.into(), int)?;
let power2 = self.imag.pow(2.into(), int)?;
let real = power.add(power2, int)?;
let result = real.value.root_n(&Real::from(2), int)?;
result.combine(real.exact)
})
}
pub(crate) fn floor<I: Interrupt>(self, int: &I) -> FResult<Exact<Real>> {
Ok(Exact::new(self.expect_real()?.floor(int)?, true))
}
pub(crate) fn ceil<I: Interrupt>(self, int: &I) -> FResult<Exact<Real>> {
Ok(Exact::new(self.expect_real()?.ceil(int)?, true))
}
pub(crate) fn round<I: Interrupt>(self, int: &I) -> FResult<Exact<Real>> {
Ok(Exact::new(self.expect_real()?.round(int)?, true))
}
pub(crate) fn arg<I: Interrupt>(self, int: &I) -> FResult<Exact<Real>> {
Ok(Exact::new(self.imag.atan2(self.real, int)?, false))
}
pub(crate) fn format<I: Interrupt>(
&self,
exact: bool,
style: FormattingStyle,
base: Base,
use_parentheses: UseParentheses,
int: &I,
) -> FResult<Exact<Formatted>> {
let style = if !exact && style == FormattingStyle::Auto {
FormattingStyle::DecimalPlaces(10)
} else if !self.imag.is_zero() && style == FormattingStyle::Auto {
FormattingStyle::Exact
} else {
style
};
if self.imag.is_zero() {
let use_parens = use_parentheses == UseParentheses::IfComplexOrFraction;
let x = self.real.format(base, style, false, use_parens, int)?;
return Ok(Exact::new(
Formatted {
first_component: x.value,
separator: "",
second_component: None,
use_parentheses: false,
},
exact && x.exact,
));
}
Ok(if self.real.is_zero() {
let use_parens = use_parentheses == UseParentheses::IfComplexOrFraction;
let x = self.imag.format(base, style, true, use_parens, int)?;
Exact::new(
Formatted {
first_component: x.value,
separator: "",
second_component: None,
use_parentheses: false,
},
exact && x.exact,
)
} else {
let mut exact = exact;
let real_part = self.real.format(base, style, false, false, int)?;
exact = exact && real_part.exact;
let (positive, imag_part) = if self.imag.is_pos() {
(true, self.imag.format(base, style, true, false, int)?)
} else {
(
false,
(-self.imag.clone()).format(base, style, true, false, int)?,
)
};
exact = exact && imag_part.exact;
let separator = if positive { " + " } else { " - " };
Exact::new(
Formatted {
first_component: real_part.value,
separator,
second_component: Some(imag_part.value),
use_parentheses: use_parentheses == UseParentheses::IfComplex
|| use_parentheses == UseParentheses::IfComplexOrFraction,
},
exact,
)
})
}
pub(crate) fn frac_pow<I: Interrupt>(self, n: Self, int: &I) -> FResult<Exact<Self>> {
if self.imag.is_zero() && n.imag.is_zero() && !self.real.is_neg() {
Ok(self.real.pow(n.real, int)?.apply(Self::from))
} else {
let exponent = self.ln(int)?.mul(&Exact::new(n, true), int)?;
Ok(exponent.value.exp(int)?.combine(exponent.exact))
}
}
fn expect_real(self) -> FResult<Real> {
if self.imag.is_zero() {
Ok(self.real)
} else {
Err(FendError::ExpectedARealNumber)
}
}
pub(crate) fn sin<I: Interrupt>(self, int: &I) -> FResult<Exact<Self>> {
// sin(a + bi) = sin(a) * cosh(b) + i * cos(a) * sinh(b)
if self.imag.is_zero() {
Ok(self.real.sin(int)?.apply(Self::from))
} else {
let cosh = Exact::new(self.imag.clone().cosh(int)?, false);
let sinh = Exact::new(self.imag.sinh(int)?, false);
let real = self.real.clone().sin(int)?.mul(cosh.re(), int)?;
let imag = self.real.cos(int)?.mul(sinh.re(), int)?;
Ok(Exact::new(
Self {
real: real.value,
imag: imag.value,
},
real.exact && imag.exact,
))
}
}
pub(crate) fn cos<I: Interrupt>(self, int: &I) -> FResult<Exact<Self>> {
// cos(a + bi) = cos(a) * cosh(b) - i * sin(a) * sinh(b)
if self.imag.is_zero() {
Ok(self.real.cos(int)?.apply(Self::from))
} else {
let cosh = Exact::new(self.imag.clone().cosh(int)?, false);
let sinh = Exact::new(self.imag.sinh(int)?, false);
let exact_real = Exact::new(self.real, true);
let real = exact_real.value.clone().cos(int)?.mul(cosh.re(), int)?;
let imag = exact_real.value.sin(int)?.mul(sinh.re(), int)?.neg();
Ok(Exact::new(
Self {
real: real.value,
imag: imag.value,
},
real.exact && imag.exact,
))
}
}
pub(crate) fn tan<I: Interrupt>(self, int: &I) -> FResult<Exact<Self>> {
let num = self.clone().sin(int)?;
let den = self.cos(int)?;
num.div(den, int)
}
/// Calculates ln(i * z + sqrt(1 - z^2))
/// This is used to implement asin and acos for all complex numbers
fn asin_ln<I: Interrupt>(self, int: &I) -> FResult<Exact<Self>> {
let half = Exact::new(Self::from(1), true).div(Exact::new(Self::from(2), true), int)?;
let exact = Exact::new(self, true);
let i = Exact::new(Self::i(), true);
let sqrt = Exact::new(Self::from(1), true)
.add(exact.clone().mul(&exact, int)?.neg(), int)?
.try_and_then(|x| x.frac_pow(half.value, int))?;
i.mul(&exact, int)?
.add(sqrt, int)?
.try_and_then(|x| x.ln(int))
}
pub(crate) fn asin<I: Interrupt>(self, int: &I) -> FResult<Self> {
// Real asin is defined for -1 <= x <= 1
if self.imag.is_zero() && self.real.between_plus_minus_one_incl(int)? {
Ok(Self::from(self.real.asin(int)?))
} else {
// asin(z) = -i * ln(i * z + sqrt(1 - z^2))
Ok(self
.asin_ln(int)?
.mul(&Exact::new(Self::i(), true), int)?
.neg()
.value)
}
}
pub(crate) fn acos<I: Interrupt>(self, int: &I) -> FResult<Self> {
// Real acos is defined for -1 <= x <= 1
if self.imag.is_zero() && self.real.between_plus_minus_one_incl(int)? {
Ok(Self::from(self.real.acos(int)?))
} else {
// acos(z) = pi/2 + i * ln(i * z + sqrt(1 - z^2))
let half_pi = Exact::new(Self::pi(), true).div(Exact::new(Self::from(2), true), int)?;
Ok(half_pi
.add(
self.asin_ln(int)?.mul(&Exact::new(Self::i(), true), int)?,
int,
)?
.value)
}
}
pub(crate) fn atan<I: Interrupt>(self, int: &I) -> FResult<Self> {
// Real atan is defined for all real numbers
if self.imag.is_zero() {
Ok(Self::from(self.real.atan(int)?))
} else {
// i/2 * (ln(-iz+1) - ln(iz+1))
let half_i = Exact::new(Self::i(), true).div(Exact::new(Self::from(2), true), int)?;
let z1 = Exact::new(self.clone(), true)
.mul(&Exact::new(Self::i().neg(), true), int)?
.add(Exact::new(Self::from(1), true), int)?;
let z2 = Exact::new(self, true)
.mul(&Exact::new(Self::i(), true), int)?
.add(Exact::new(Self::from(1), true), int)?;
Ok(half_i
.mul(
&z1.try_and_then(|z| z.ln(int))?
.add(z2.try_and_then(|z| z.ln(int))?.neg(), int)?,
int,
)?
.value)
}
}
pub(crate) fn sinh<I: Interrupt>(self, int: &I) -> FResult<Self> {
if self.imag.is_zero() {
Ok(Self::from(self.real.sinh(int)?))
} else {
// sinh(a+bi)=sinh(a)cos(b)+icosh(a)sin(b)
let sinh = Exact::new(self.real.clone().sinh(int)?, false);
let cos = self.imag.clone().cos(int)?;
let cosh = Exact::new(self.real.cosh(int)?, false);
let sin = self.imag.sin(int)?;
Ok(Self {
real: sinh.mul(cos.re(), int)?.value,
imag: cosh.mul(sin.re(), int)?.value,
})
}
}
pub(crate) fn cosh<I: Interrupt>(self, int: &I) -> FResult<Self> {
if self.imag.is_zero() {
Ok(Self::from(self.real.cosh(int)?))
} else {
// cosh(a+bi)=cosh(a)cos(b)+isinh(a)sin(b)
let cosh = Exact::new(self.real.clone().cosh(int)?, false);
let cos = self.imag.clone().cos(int)?;
let sinh = Exact::new(self.real.sinh(int)?, false);
let sin = self.imag.sin(int)?;
Ok(Self {
real: cosh.mul(cos.re(), int)?.value,
imag: sinh.mul(sin.re(), int)?.value,
})
}
}
pub(crate) fn tanh<I: Interrupt>(self, int: &I) -> FResult<Self> {
if self.imag.is_zero() {
Ok(Self::from(self.real.tanh(int)?))
} else {
// tanh(a+bi)=sinh(a+bi)/cosh(a+bi)
Exact::new(self.clone().sinh(int)?, false)
.div(Exact::new(self.cosh(int)?, false), int)
.map(|x| x.value)
}
}
pub(crate) fn asinh<I: Interrupt>(self, int: &I) -> FResult<Self> {
// Real asinh is defined for all real numbers
if self.imag.is_zero() {
Ok(Self::from(self.real.asinh(int)?))
} else {
// asinh(z)=ln(z+sqrt(z^2+1))
let exact = Exact::new(self, true);
let half = Exact::new(Self::from(1), true).div(Exact::new(Self::from(2), true), int)?;
let sqrt = exact
.clone()
.mul(&exact, int)?
.add(Exact::new(Self::from(1), true), int)?
.try_and_then(|x| x.frac_pow(half.value, int))?;
sqrt.add(exact, int)?
.try_and_then(|x| x.ln(int))
.map(|x| x.value)
}
}
pub(crate) fn acosh<I: Interrupt>(self, int: &I) -> FResult<Self> {
// Real acosh is defined for x >= 1
if self.imag.is_zero() && self.real.compare(&1.into(), int)? != Ordering::Less {
Ok(Self::from(self.real.acosh(int)?))
} else {
// acosh(z)=ln(z+sqrt(z^2-1))
let exact = Exact::new(self, true);
let half = Exact::new(Self::from(1), true).div(Exact::new(Self::from(2), true), int)?;
let sqrt = exact
.clone()
.mul(&exact, int)?
.add(Exact::new(Self::from(1), true).neg(), int)?
.try_and_then(|x| x.frac_pow(half.value, int))?;
sqrt.add(exact, int)?
.try_and_then(|x| x.ln(int))
.map(|x| x.value)
}
}
pub(crate) fn atanh<I: Interrupt>(self, int: &I) -> FResult<Self> {
// Real atanh is defined for -1 < x < 1
// Undefined for x = 1, -1
if self.imag.is_zero() && self.real.between_plus_minus_one_excl(int)? {
Ok(Self::from(self.real.atanh(int)?))
} else {
// atanh(z)=ln(sqrt(-(z-1)/(z-1)))
let exact = Exact::new(self, true);
let one = Exact::new(Self::from(1), true);
let half = Exact::new(Self::from(1), true).div(Exact::new(Self::from(2), true), int)?;
exact
.clone()
.add(one.clone(), int)?
.neg()
.div(exact.add(one.neg(), int)?, int)?
.try_and_then(|x| x.frac_pow(half.value, int))?
.try_and_then(|z| z.ln(int))
.map(|x| x.value)
}
}
pub(crate) fn ln<I: Interrupt>(self, int: &I) -> FResult<Exact<Self>> {
if self.imag.is_zero() && self.real.is_pos() {
Ok(self.real.ln(int)?.apply(Self::from))
} else {
// ln(z) = ln(|z|) + i * arg(z)
let abs = self.clone().abs(int)?;
let real = abs.value.ln(int)?.combine(abs.exact);
let arg = self.arg(int)?;
Ok(Exact::new(
Self {
real: real.value,
imag: arg.value,
},
real.exact && arg.exact,
))
}
}
pub(crate) fn log<I: Interrupt>(self, base: Self, int: &I) -> FResult<Self> {
// log_n(z) = ln(z) / ln(n)
let ln = self.ln(int)?;
let ln2 = base.ln(int)?;
Ok(ln.div(ln2, int)?.value)
}
pub(crate) fn log2<I: Interrupt>(self, int: &I) -> FResult<Self> {
if self.imag.is_zero() && self.real.is_pos() {
Ok(Self::from(self.real.log2(int)?))
} else {
self.log(Self::from(2), int)
}
}
pub(crate) fn log10<I: Interrupt>(self, int: &I) -> FResult<Self> {
if self.imag.is_zero() && self.real.is_pos() {
Ok(Self::from(self.real.log10(int)?))
} else {
self.log(Self::from(10), int)
}
}
pub(crate) fn is_definitely_one(&self) -> bool {
self.real.is_definitely_one() && self.imag.is_definitely_zero()
}
pub(crate) fn modulo<I: Interrupt>(self, rhs: Self, int: &I) -> FResult<Self> {
Ok(Self::from(
self.expect_real()?.modulo(rhs.expect_real()?, int)?,
))
}
pub(crate) fn bitwise<I: Interrupt>(
self,
rhs: Self,
op: crate::ast::BitwiseBop,
int: &I,
) -> FResult<Self> {
Ok(Self::from(self.expect_real()?.bitwise(
rhs.expect_real()?,
op,
int,
)?))
}
pub(crate) fn combination<I: Interrupt>(self, rhs: Self, int: &I) -> FResult<Self> {
Ok(Self::from(
self.expect_real()?.combination(rhs.expect_real()?, int)?,
))
}
pub(crate) fn permutation<I: Interrupt>(self, rhs: Self, int: &I) -> FResult<Self> {
Ok(Self::from(
self.expect_real()?.permutation(rhs.expect_real()?, int)?,
))
}
}
impl Exact<Complex> {
pub(crate) fn add<I: Interrupt>(self, rhs: Self, int: &I) -> FResult<Self> {
let (self_real, self_imag) = self.apply(|x| (x.real, x.imag)).pair();
let (rhs_real, rhs_imag) = rhs.apply(|x| (x.real, x.imag)).pair();
let real = self_real.add(rhs_real, int)?;
let imag = self_imag.add(rhs_imag, int)?;
Ok(Self::new(
Complex {
real: real.value,
imag: imag.value,
},
real.exact && imag.exact,
))
}
pub(crate) fn mul<I: Interrupt>(self, rhs: &Self, int: &I) -> FResult<Self> {
// (a + bi) * (c + di)
// => ac + bci + adi - bd
// => (ac - bd) + (bc + ad)i
let (self_real, self_imag) = self.apply(|x| (x.real, x.imag)).pair();
let (rhs_real, rhs_imag) = rhs.clone().apply(|x| (x.real, x.imag)).pair();
let prod1 = self_real.clone().mul(rhs_real.re(), int)?;
let prod2 = self_imag.clone().mul(rhs_imag.re(), int)?;
let real_part = prod1.add(-prod2, int)?;
let prod3 = self_real.mul(rhs_imag.re(), int)?;
let prod4 = self_imag.mul(rhs_real.re(), int)?;
let imag_part = prod3.add(prod4, int)?;
Ok(Self::new(
Complex {
real: real_part.value,
imag: imag_part.value,
},
real_part.exact && imag_part.exact,
))
}
pub(crate) fn div<I: Interrupt>(self, rhs: Self, int: &I) -> FResult<Self> {
// (u + vi) / (x + yi) = (1/(x^2 + y^2)) * ((ux + vy) + (vx - uy)i)
let (u, v) = self.apply(|x| (x.real, x.imag)).pair();
let (x, y) = rhs.apply(|x| (x.real, x.imag)).pair();
// if both numbers are real, use this simplified algorithm
if v.exact && v.value.is_zero() && y.exact && y.value.is_zero() {
return Ok(u.div(&x, int)?.apply(|real| Complex {
real,
imag: 0.into(),
}));
}
let prod1 = x.clone().mul(x.re(), int)?;
let prod2 = y.clone().mul(y.re(), int)?;
let sum = prod1.add(prod2, int)?;
let real_part = Exact::new(Real::from(1), true).div(&sum, int)?;
let prod3 = u.clone().mul(x.re(), int)?;
let prod4 = v.clone().mul(y.re(), int)?;
let real2 = prod3.add(prod4, int)?;
let prod5 = v.mul(x.re(), int)?;
let prod6 = u.mul(y.re(), int)?;
let imag2 = prod5.add(-prod6, int)?;
let multiplicand = Self::new(
Complex {
real: real2.value,
imag: imag2.value,
},
real2.exact && imag2.exact,
);
let result = Self::new(
Complex {
real: real_part.value,
imag: 0.into(),
},
real_part.exact,
)
.mul(&multiplicand, int)?;
Ok(result)
}
}
impl Neg for Complex {
type Output = Self;
fn neg(self) -> Self {
Self {
real: -self.real,
imag: -self.imag,
}
}
}
impl Neg for &Complex {
type Output = Complex;
fn neg(self) -> Complex {
-self.clone()
}
}
impl From<u64> for Complex {
fn from(i: u64) -> Self {
Self {
real: i.into(),
imag: 0.into(),
}
}
}
impl From<Real> for Complex {
fn from(i: Real) -> Self {
Self {
real: i,
imag: 0.into(),
}
}
}
#[derive(Debug)]
pub(crate) struct Formatted {
first_component: real::Formatted,
separator: &'static str,
second_component: Option<real::Formatted>,
use_parentheses: bool,
}
impl fmt::Display for Formatted {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.use_parentheses {
write!(f, "(")?;
}
write!(f, "{}{}", self.first_component, self.separator)?;
if let Some(second_component) = &self.second_component {
write!(f, "{second_component}")?;
}
if self.use_parentheses {
write!(f, ")")?;
}
Ok(())
}
}