//! fixed-point numerical types
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
// shared between Fixed, F26Dot6, F2Dot14, F4Dot12, F6Dot10
macro_rules! fixed_impl {
($name:ident, $bits:literal, $fract_bits:literal, $ty:ty) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::AnyBitPattern, bytemuck::NoUninit))]
#[repr(transparent)]
#[doc = concat!(stringify!($bits), "-bit signed fixed point number with ", stringify!($fract_bits), " bits of fraction." )]
pub struct $name($ty);
impl $name {
/// Minimum value.
pub const MIN: Self = Self(<$ty>::MIN);
/// Maximum value.
pub const MAX: Self = Self(<$ty>::MAX);
/// This type's smallest representable value
pub const EPSILON: Self = Self(1);
/// Representation of 0.0.
pub const ZERO: Self = Self(0);
/// Representation of 1.0.
pub const ONE: Self = Self(1 << $fract_bits);
const INT_MASK: $ty = !0 << $fract_bits;
const ROUND: $ty = 1 << ($fract_bits - 1);
const FRACT_BITS: usize = $fract_bits;
/// Creates a new fixed point value from the underlying bit representation.
#[inline(always)]
pub const fn from_bits(bits: $ty) -> Self {
Self(bits)
}
/// Returns the underlying bit representation of the value.
#[inline(always)]
pub const fn to_bits(self) -> $ty {
self.0
}
//TODO: is this actually useful?
/// Returns the nearest integer value.
#[inline(always)]
pub const fn round(self) -> Self {
Self(self.0.wrapping_add(Self::ROUND) & Self::INT_MASK)
}
/// Returns the absolute value of the number.
#[inline(always)]
pub const fn abs(self) -> Self {
Self(self.0.abs())
}
/// Returns the largest integer less than or equal to the number.
#[inline(always)]
pub const fn floor(self) -> Self {
Self(self.0 & Self::INT_MASK)
}
/// Returns the fractional part of the number.
#[inline(always)]
pub const fn fract(self) -> Self {
Self(self.0 - self.floor().0)
}
/// Wrapping addition.
#[inline(always)]
pub fn wrapping_add(self, other: Self) -> Self {
Self(self.0.wrapping_add(other.0))
}
/// Saturating addition.
#[inline(always)]
pub const fn saturating_add(self, other: Self) -> Self {
Self(self.0.saturating_add(other.0))
}
/// Wrapping substitution.
#[inline(always)]
pub const fn wrapping_sub(self, other: Self) -> Self {
Self(self.0.wrapping_sub(other.0))
}
/// Saturating substitution.
#[inline(always)]
pub const fn saturating_sub(self, other: Self) -> Self {
Self(self.0.saturating_sub(other.0))
}
/// The representation of this number as a big-endian byte array.
#[inline(always)]
pub const fn to_be_bytes(self) -> [u8; $bits / 8] {
self.0.to_be_bytes()
}
}
impl Add for $name {
type Output = Self;
#[inline(always)]
fn add(self, other: Self) -> Self {
// same overflow semantics as std: panic in debug, wrap in release
Self(self.0 + other.0)
}
}
impl AddAssign for $name {
#[inline(always)]
fn add_assign(&mut self, other: Self) {
*self = *self + other;
}
}
impl Sub for $name {
type Output = Self;
#[inline(always)]
fn sub(self, other: Self) -> Self {
Self(self.0 - other.0)
}
}
impl SubAssign for $name {
#[inline(always)]
fn sub_assign(&mut self, other: Self) {
*self = *self - other;
}
}
};
}
/// Implements multiplication and division operators for fixed types.
macro_rules! fixed_mul_div {
($ty:ty) => {
impl $ty {
/// Multiplies `self` by `a` and divides the product by `b`.
// This one is specifically not always inlined due to size and
// frequency of use. We leave it to compiler discretion.
#[inline]
pub const fn mul_div(&self, a: Self, b: Self) -> Self {
let mut sign = 1;
let mut su = self.0 as u64;
let mut au = a.0 as u64;
let mut bu = b.0 as u64;
if self.0 < 0 {
su = 0u64.wrapping_sub(su);
sign = -1;
}
if a.0 < 0 {
au = 0u64.wrapping_sub(au);
sign = -sign;
}
if b.0 < 0 {
bu = 0u64.wrapping_sub(bu);
sign = -sign;
}
let result = if bu > 0 {
su.wrapping_mul(au).wrapping_add(bu >> 1) / bu
} else {
0x7FFFFFFF
};
Self(if sign < 0 {
-(result as i32)
} else {
result as i32
})
}
}
impl Mul for $ty {
type Output = Self;
#[inline(always)]
fn mul(self, other: Self) -> Self::Output {
let ab = self.0 as i64 * other.0 as i64;
Self(((ab + 0x8000 - i64::from(ab < 0)) >> 16) as i32)
}
}
impl MulAssign for $ty {
#[inline(always)]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Div for $ty {
type Output = Self;
#[inline(always)]
fn div(self, other: Self) -> Self::Output {
let mut sign = 1;
let mut a = self.0;
let mut b = other.0;
if a < 0 {
a = -a;
sign = -1;
}
if b < 0 {
b = -b;
sign = -sign;
}
let q = if b == 0 {
0x7FFFFFFF
} else {
((((a as u64) << 16) + ((b as u64) >> 1)) / (b as u64)) as u32
};
Self(if sign < 0 { -(q as i32) } else { q as i32 })
}
}
impl DivAssign for $ty {
#[inline(always)]
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
impl Neg for $ty {
type Output = Self;
#[inline(always)]
fn neg(self) -> Self {
Self(-self.0)
}
}
};
}
/// impl float conversion methods.
///
/// We convert to different float types in order to ensure we can roundtrip
/// without floating point error.
macro_rules! float_conv {
($name:ident, $to:ident, $from:ident, $ty:ty) => {
impl $name {
#[doc = concat!("Creates a fixed point value from a", stringify!($ty), ".")]
///
/// This operation is lossy; the float will be rounded to the nearest
/// representable value.
#[inline(always)]
pub fn $from(x: $ty) -> Self {
// When x is positive: 1.0 - 0.5 = 0.5
// When x is negative: 0.0 - 0.5 = -0.5
let frac = (x.is_sign_positive() as u8 as $ty) - 0.5;
Self((x * Self::ONE.0 as $ty + frac) as _)
}
#[doc = concat!("Returns the value as an ", stringify!($ty), ".")]
///
/// This operation is lossless: all representable values can be
/// round-tripped.
#[inline(always)]
pub fn $to(self) -> $ty {
let int = ((self.0 & Self::INT_MASK) >> Self::FRACT_BITS) as $ty;
let fract = (self.0 & !Self::INT_MASK) as $ty / Self::ONE.0 as $ty;
int + fract
}
}
//hack: we can losslessly go to float, so use those fmt impls
impl std::fmt::Display for $name {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
self.$to().fmt(f)
}
}
impl std::fmt::Debug for $name {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
self.$to().fmt(f)
}
}
};
}
fixed_impl!(F2Dot14, 16, 14, i16);
fixed_impl!(F4Dot12, 16, 12, i16);
fixed_impl!(F6Dot10, 16, 10, i16);
fixed_impl!(Fixed, 32, 16, i32);
fixed_impl!(F26Dot6, 32, 6, i32);
fixed_mul_div!(Fixed);
fixed_mul_div!(F26Dot6);
float_conv!(F2Dot14, to_f32, from_f32, f32);
float_conv!(F4Dot12, to_f32, from_f32, f32);
float_conv!(F6Dot10, to_f32, from_f32, f32);
float_conv!(Fixed, to_f64, from_f64, f64);
float_conv!(F26Dot6, to_f64, from_f64, f64);
crate::newtype_scalar!(F2Dot14, [u8; 2]);
crate::newtype_scalar!(F4Dot12, [u8; 2]);
crate::newtype_scalar!(F6Dot10, [u8; 2]);
crate::newtype_scalar!(Fixed, [u8; 4]);
impl Fixed {
/// Creates a 16.16 fixed point value from a 32 bit integer.
#[inline(always)]
pub const fn from_i32(i: i32) -> Self {
Self(i << 16)
}
/// Converts a 16.16 fixed point value to a 32 bit integer, rounding off
/// the fractional bits.
#[inline(always)]
pub const fn to_i32(self) -> i32 {
self.0.wrapping_add(0x8000) >> 16
}
/// Converts a 16.16 to 26.6 fixed point value.
#[inline(always)]
pub const fn to_f26dot6(self) -> F26Dot6 {
F26Dot6(self.0.wrapping_add(0x200) >> 10)
}
/// Converts a 16.16 to 2.14 fixed point value.
///
/// This specific conversion is defined by the spec:
/// <https://learn.microsoft.com/en-us/typography/opentype/spec/otvaroverview#coordinate-scales-and-normalization>
///
/// "5. Convert the final, normalized 16.16 coordinate value to 2.14 by this method: add 0x00000002,
/// and sign-extend shift to the right by 2."
#[inline(always)]
pub const fn to_f2dot14(self) -> F2Dot14 {
F2Dot14((self.0.wrapping_add(2) >> 2) as _)
}
/// Converts a 16.16 fixed point value to a single precision floating
/// point value.
///
/// This operation is lossy. Use `to_f64()` for a lossless conversion.
#[inline(always)]
pub fn to_f32(self) -> f32 {
const SCALE_FACTOR: f32 = 1.0 / 65536.0;
self.0 as f32 * SCALE_FACTOR
}
}
impl From<i32> for Fixed {
fn from(value: i32) -> Self {
Self::from_i32(value)
}
}
impl F26Dot6 {
/// Creates a 26.6 fixed point value from a 32 bit integer.
#[inline(always)]
pub const fn from_i32(i: i32) -> Self {
Self(i << 6)
}
/// Converts a 26.6 fixed point value to a 32 bit integer, rounding off
/// the fractional bits.
#[inline(always)]
pub const fn to_i32(self) -> i32 {
self.0.wrapping_add(32) >> 6
}
/// Converts a 26.6 fixed point value to a single precision floating
/// point value.
///
/// This operation is lossy. Use `to_f64()` for a lossless conversion.
#[inline(always)]
pub fn to_f32(self) -> f32 {
const SCALE_FACTOR: f32 = 1.0 / 64.0;
self.0 as f32 * SCALE_FACTOR
}
}
impl F2Dot14 {
/// Converts a 2.14 to 16.16 fixed point value.
#[inline(always)]
pub const fn to_fixed(self) -> Fixed {
Fixed(self.0 as i32 * 4)
}
}
#[cfg(test)]
mod tests {
#![allow(overflowing_literals)] // we want to specify byte values directly
use super::*;
#[test]
fn f2dot14_floats() {
// Examples from https://docs.microsoft.com/en-us/typography/opentype/spec/otff#data-types
assert_eq!(F2Dot14(0x7fff), F2Dot14::from_f32(1.999939));
assert_eq!(F2Dot14(0x7000), F2Dot14::from_f32(1.75));
assert_eq!(F2Dot14(0x0001), F2Dot14::from_f32(0.0000610356));
assert_eq!(F2Dot14(0x0000), F2Dot14::from_f32(0.0));
assert_eq!(F2Dot14(0xffff), F2Dot14::from_f32(-0.000061));
assert_eq!(F2Dot14(0x8000), F2Dot14::from_f32(-2.0));
}
#[test]
fn roundtrip_f2dot14() {
for i in i16::MIN..=i16::MAX {
let val = F2Dot14(i);
assert_eq!(val, F2Dot14::from_f32(val.to_f32()));
}
}
#[test]
fn round_f2dot14() {
assert_eq!(F2Dot14(0x7000).round(), F2Dot14::from_f32(-2.0));
assert_eq!(F2Dot14(0x1F00).round(), F2Dot14::from_f32(0.0));
assert_eq!(F2Dot14(0x2000).round(), F2Dot14::from_f32(1.0));
}
#[test]
fn round_fixed() {
//TODO: make good test cases
assert_eq!(Fixed(0x0001_7FFE).round(), Fixed(0x0001_0000));
assert_eq!(Fixed(0x0001_7FFF).round(), Fixed(0x0001_0000));
assert_eq!(Fixed(0x0001_8000).round(), Fixed(0x0002_0000));
}
// disabled because it's slow; these were just for my edification anyway
//#[test]
//fn roundtrip_fixed() {
//for i in i32::MIN..=i32::MAX {
//let val = Fixed(i);
//assert_eq!(val, Fixed::from_f64(val.to_f64()));
//}
//}
#[test]
fn fixed_floats() {
assert_eq!(Fixed(0x7fff_0000), Fixed::from_f64(32767.));
assert_eq!(Fixed(0x7000_0001), Fixed::from_f64(28672.00001525879));
assert_eq!(Fixed(0x0001_0000), Fixed::from_f64(1.0));
assert_eq!(Fixed(0x0000_0000), Fixed::from_f64(0.0));
assert_eq!(
Fixed(i32::from_be_bytes([0xff; 4])),
Fixed::from_f64(-0.000015259)
);
assert_eq!(Fixed(0x7fff_ffff), Fixed::from_f64(32768.0));
}
// We lost the f64::round() intrinsic when dropping std and the
// alternative implementation was very slightly incorrect, throwing
// off some tests. This makes sure we match.
#[test]
fn fixed_floats_rounding() {
fn with_round_intrinsic(x: f64) -> Fixed {
Fixed((x * 65536.0).round() as i32)
}
// These particular values were tripping up tests
let inputs = [0.05, 0.6, 0.2, 0.4, 0.67755];
for input in inputs {
assert_eq!(Fixed::from_f64(input), with_round_intrinsic(input));
// Test negated values as well for good measure
assert_eq!(Fixed::from_f64(-input), with_round_intrinsic(-input));
}
}
#[test]
fn fixed_to_int() {
assert_eq!(Fixed::from_f64(1.0).to_i32(), 1);
assert_eq!(Fixed::from_f64(1.5).to_i32(), 2);
assert_eq!(F26Dot6::from_f64(1.0).to_i32(), 1);
assert_eq!(F26Dot6::from_f64(1.5).to_i32(), 2);
}
#[test]
fn fixed_from_int() {
assert_eq!(Fixed::from_i32(1000).to_bits(), 1000 << 16);
assert_eq!(F26Dot6::from_i32(1000).to_bits(), 1000 << 6);
}
#[test]
fn fixed_to_f26dot6() {
assert_eq!(Fixed::from_f64(42.5).to_f26dot6(), F26Dot6::from_f64(42.5));
}
#[test]
fn fixed_muldiv() {
assert_eq!(
Fixed::from_f64(0.5) * Fixed::from_f64(2.0),
Fixed::from_f64(1.0)
);
assert_eq!(
Fixed::from_f64(0.5) / Fixed::from_f64(2.0),
Fixed::from_f64(0.25)
);
}
}