use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
/// Two dimensional point with a generic coordinate type.
#[derive(Copy, Clone, PartialEq, Eq, Default, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::AnyBitPattern))]
#[repr(C)]
pub struct Point<T> {
/// X coordinate.
pub x: T,
/// Y coordinate.
pub y: T,
}
/// SAFETY:
/// This trait has four preconditions:
///
/// 1. All fields in the struct must implement `NoUninit`
/// 2. The struct must be `#[repr(C)]` or `#[repr(transparent)]`
/// 3. The struct must not contain any padding bytes
/// 4. The struct must contain no generic parameters
///
/// We satisfy the first and second preconditions trivially. The third
/// condition is satisfied because the struct is repr(C) and contains
/// two fields of the same type which guarantees no padding.
///
/// The fourth condition is obviously not satisfied which is what
/// requires implementing this trait manually rather than deriving
/// it. This condition only exists because the bytemuck derive
/// macro cannot guarantee the first three conditions in a type
/// with generic parameters.
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::NoUninit for Point<T> where T: bytemuck::NoUninit {}
impl<T> Point<T> {
/// Creates a new point with the given x and y coordinates.
#[inline(always)]
pub const fn new(x: T, y: T) -> Self {
Self { x, y }
}
/// Creates a new point from a single value assigned to both coordinates.
pub const fn broadcast(xy: T) -> Self
where
T: Copy,
{
Self { x: xy, y: xy }
}
/// Maps `Point<T>` to `Point<U>` by applying a function to each coordinate.
#[inline(always)]
pub fn map<U>(self, mut f: impl FnMut(T) -> U) -> Point<U> {
Point {
x: f(self.x),
y: f(self.y),
}
}
}
impl<T> Add for Point<T>
where
T: Add<Output = T>,
{
type Output = Self;
#[inline(always)]
fn add(self, rhs: Self) -> Self::Output {
Self {
x: self.x + rhs.x,
y: self.y + rhs.y,
}
}
}
impl<T> AddAssign for Point<T>
where
T: AddAssign,
{
#[inline(always)]
fn add_assign(&mut self, rhs: Self) {
self.x += rhs.x;
self.y += rhs.y;
}
}
impl<T> Sub for Point<T>
where
T: Sub<Output = T>,
{
type Output = Self;
#[inline(always)]
fn sub(self, rhs: Self) -> Self::Output {
Self {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
}
impl<T> SubAssign for Point<T>
where
T: SubAssign,
{
#[inline(always)]
fn sub_assign(&mut self, rhs: Self) {
self.x -= rhs.x;
self.y -= rhs.y;
}
}
impl<T> Mul for Point<T>
where
T: Mul<Output = T>,
{
type Output = Self;
#[inline(always)]
fn mul(self, rhs: Self) -> Self::Output {
Self {
x: self.x * rhs.x,
y: self.y * rhs.y,
}
}
}
impl<T> Mul<T> for Point<T>
where
T: Mul<Output = T> + Copy,
{
type Output = Self;
#[inline(always)]
fn mul(self, rhs: T) -> Self::Output {
Self {
x: self.x * rhs,
y: self.y * rhs,
}
}
}
impl<T> MulAssign for Point<T>
where
T: MulAssign,
{
#[inline(always)]
fn mul_assign(&mut self, rhs: Self) {
self.x *= rhs.x;
self.y *= rhs.y;
}
}
impl<T> MulAssign<T> for Point<T>
where
T: MulAssign + Copy,
{
#[inline(always)]
fn mul_assign(&mut self, rhs: T) {
self.x *= rhs;
self.y *= rhs;
}
}
impl<T> Div for Point<T>
where
T: Div<Output = T>,
{
type Output = Self;
#[inline(always)]
fn div(self, rhs: Self) -> Self::Output {
Self {
x: self.x / rhs.x,
y: self.y / rhs.y,
}
}
}
impl<T> Div<T> for Point<T>
where
T: Div<Output = T> + Copy,
{
type Output = Self;
#[inline(always)]
fn div(self, rhs: T) -> Self::Output {
Self {
x: self.x / rhs,
y: self.y / rhs,
}
}
}
impl<T> DivAssign for Point<T>
where
T: DivAssign,
{
#[inline(always)]
fn div_assign(&mut self, rhs: Self) {
self.x /= rhs.x;
self.y /= rhs.y;
}
}
impl<T> DivAssign<T> for Point<T>
where
T: DivAssign + Copy,
{
#[inline(always)]
fn div_assign(&mut self, rhs: T) {
self.x /= rhs;
self.y /= rhs;
}
}
impl<T> Neg for Point<T>
where
T: Neg<Output = T>,
{
type Output = Self;
#[inline(always)]
fn neg(self) -> Self::Output {
Self {
x: -self.x,
y: -self.y,
}
}
}
#[cfg(test)]
mod tests {
use super::Point;
use crate::F26Dot6;
#[test]
fn map() {
assert_eq!(
Point::new(42.5, 20.1).map(F26Dot6::from_f64),
Point::new(F26Dot6::from_f64(42.5), F26Dot6::from_f64(20.1))
);
}
#[test]
fn add() {
assert_eq!(Point::new(1, 2) + Point::new(3, 4), Point::new(4, 6));
let mut point = Point::new(1, 2);
point += Point::new(3, 4);
assert_eq!(point, Point::new(4, 6));
}
#[test]
fn sub() {
assert_eq!(Point::new(1, 2) - Point::new(3, 4), Point::new(-2, -2));
let mut point = Point::new(1, 2);
point -= Point::new(3, 4);
assert_eq!(point, Point::new(-2, -2));
}
#[test]
fn mul() {
assert_eq!(Point::new(1, 2) * Point::new(3, 4), Point::new(3, 8));
let mut point = Point::new(1, 2);
point *= Point::new(3, 4);
assert_eq!(point, Point::new(3, 8));
assert_eq!(Point::new(1, 2) * 8, Point::new(8, 16));
}
#[test]
fn div() {
assert_eq!(Point::new(10, 16) / Point::new(2, 3), Point::new(5, 5));
let mut point = Point::new(10, 16);
point /= Point::new(2, 3);
assert_eq!(point, Point::new(5, 5));
assert_eq!(Point::new(10, 16) / 2, Point::new(5, 8));
}
#[test]
fn neg() {
assert_eq!(-Point::new(1, -2), Point::new(-1, 2));
}
}