use quickcheck as qc;
use rand::{distributions::{Distribution, Standard}, Rng, SeedableRng, rngs::StdRng};
use rand::{seq::SliceRandom, thread_rng};
use std::{cmp::min, fmt::Debug, marker::PhantomData};
use itertools as it;
use crate::it::Itertools;
use crate::it::ExactlyOneError;
use crate::it::multizip;
use crate::it::multipeek;
use crate::it::peek_nth;
use crate::it::free::rciter;
use crate::it::free::put_back_n;
use crate::it::FoldWhile;
use crate::it::cloned;
use crate::it::iproduct;
use crate::it::izip;
#[test]
fn product3() {
let prod = iproduct!(0..3, 0..2, 0..2);
assert_eq!(prod.size_hint(), (12, Some(12)));
let v = prod.collect_vec();
for i in 0..3 {
for j in 0..2 {
for k in 0..2 {
assert!((i, j, k) == v[(i * 2 * 2 + j * 2 + k) as usize]);
}
}
}
for (_, _, _, _) in iproduct!(0..3, 0..2, 0..2, 0..3) {
/* test compiles */
}
}
#[test]
fn interleave_shortest() {
let v0: Vec<i32> = vec![0, 2, 4];
let v1: Vec<i32> = vec![1, 3, 5, 7];
let it = v0.into_iter().interleave_shortest(v1.into_iter());
assert_eq!(it.size_hint(), (6, Some(6)));
assert_eq!(it.collect_vec(), vec![0, 1, 2, 3, 4, 5]);
let v0: Vec<i32> = vec![0, 2, 4, 6, 8];
let v1: Vec<i32> = vec![1, 3, 5];
let it = v0.into_iter().interleave_shortest(v1.into_iter());
assert_eq!(it.size_hint(), (7, Some(7)));
assert_eq!(it.collect_vec(), vec![0, 1, 2, 3, 4, 5, 6]);
let i0 = ::std::iter::repeat(0);
let v1: Vec<_> = vec![1, 3, 5];
let it = i0.interleave_shortest(v1.into_iter());
assert_eq!(it.size_hint(), (7, Some(7)));
let v0: Vec<_> = vec![0, 2, 4];
let i1 = ::std::iter::repeat(1);
let it = v0.into_iter().interleave_shortest(i1);
assert_eq!(it.size_hint(), (6, Some(6)));
}
#[test]
fn duplicates_by() {
let xs = ["aaa", "bbbbb", "aa", "ccc", "bbbb", "aaaaa", "cccc"];
let ys = ["aa", "bbbb", "cccc"];
it::assert_equal(ys.iter(), xs.iter().duplicates_by(|x| x[..2].to_string()));
it::assert_equal(ys.iter(), xs.iter().rev().duplicates_by(|x| x[..2].to_string()).rev());
let ys_rev = ["ccc", "aa", "bbbbb"];
it::assert_equal(ys_rev.iter(), xs.iter().duplicates_by(|x| x[..2].to_string()).rev());
}
#[test]
fn duplicates() {
let xs = [0, 1, 2, 3, 2, 1, 3];
let ys = [2, 1, 3];
it::assert_equal(ys.iter(), xs.iter().duplicates());
it::assert_equal(ys.iter(), xs.iter().rev().duplicates().rev());
let ys_rev = [3, 2, 1];
it::assert_equal(ys_rev.iter(), xs.iter().duplicates().rev());
let xs = [0, 1, 0, 1];
let ys = [0, 1];
it::assert_equal(ys.iter(), xs.iter().duplicates());
it::assert_equal(ys.iter(), xs.iter().rev().duplicates().rev());
let ys_rev = [1, 0];
it::assert_equal(ys_rev.iter(), xs.iter().duplicates().rev());
let xs = vec![0, 1, 2, 1, 2];
let ys = vec![1, 2];
assert_eq!(ys, xs.iter().duplicates().cloned().collect_vec());
assert_eq!(ys, xs.iter().rev().duplicates().rev().cloned().collect_vec());
let ys_rev = vec![2, 1];
assert_eq!(ys_rev, xs.iter().duplicates().rev().cloned().collect_vec());
}
#[test]
fn unique_by() {
let xs = ["aaa", "bbbbb", "aa", "ccc", "bbbb", "aaaaa", "cccc"];
let ys = ["aaa", "bbbbb", "ccc"];
it::assert_equal(ys.iter(), xs.iter().unique_by(|x| x[..2].to_string()));
it::assert_equal(ys.iter(), xs.iter().rev().unique_by(|x| x[..2].to_string()).rev());
let ys_rev = ["cccc", "aaaaa", "bbbb"];
it::assert_equal(ys_rev.iter(), xs.iter().unique_by(|x| x[..2].to_string()).rev());
}
#[test]
fn unique() {
let xs = [0, 1, 2, 3, 2, 1, 3];
let ys = [0, 1, 2, 3];
it::assert_equal(ys.iter(), xs.iter().unique());
it::assert_equal(ys.iter(), xs.iter().rev().unique().rev());
let ys_rev = [3, 1, 2, 0];
it::assert_equal(ys_rev.iter(), xs.iter().unique().rev());
let xs = [0, 1];
let ys = [0, 1];
it::assert_equal(ys.iter(), xs.iter().unique());
it::assert_equal(ys.iter(), xs.iter().rev().unique().rev());
let ys_rev = [1, 0];
it::assert_equal(ys_rev.iter(), xs.iter().unique().rev());
}
#[test]
fn intersperse() {
let xs = ["a", "", "b", "c"];
let v: Vec<&str> = xs.iter().cloned().intersperse(", ").collect();
let text: String = v.concat();
assert_eq!(text, "a, , b, c".to_string());
let ys = [0, 1, 2, 3];
let mut it = ys[..0].iter().copied().intersperse(1);
assert!(it.next() == None);
}
#[test]
fn dedup() {
let xs = [0, 1, 1, 1, 2, 1, 3, 3];
let ys = [0, 1, 2, 1, 3];
it::assert_equal(ys.iter(), xs.iter().dedup());
let xs = [0, 0, 0, 0, 0];
let ys = [0];
it::assert_equal(ys.iter(), xs.iter().dedup());
let xs = [0, 1, 1, 1, 2, 1, 3, 3];
let ys = [0, 1, 2, 1, 3];
let mut xs_d = Vec::new();
xs.iter().dedup().fold((), |(), &elt| xs_d.push(elt));
assert_eq!(&xs_d, &ys);
}
#[test]
fn coalesce() {
let data = vec![-1., -2., -3., 3., 1., 0., -1.];
let it = data.iter().cloned().coalesce(|x, y|
if (x >= 0.) == (y >= 0.) {
Ok(x + y)
} else {
Err((x, y))
}
);
itertools::assert_equal(it.clone(), vec![-6., 4., -1.]);
assert_eq!(
it.fold(vec![], |mut v, n| {
v.push(n);
v
}),
vec![-6., 4., -1.]
);
}
#[test]
fn dedup_by() {
let xs = [(0, 0), (0, 1), (1, 1), (2, 1), (0, 2), (3, 1), (0, 3), (1, 3)];
let ys = [(0, 0), (0, 1), (0, 2), (3, 1), (0, 3)];
it::assert_equal(ys.iter(), xs.iter().dedup_by(|x, y| x.1==y.1));
let xs = [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)];
let ys = [(0, 1)];
it::assert_equal(ys.iter(), xs.iter().dedup_by(|x, y| x.0==y.0));
let xs = [(0, 0), (0, 1), (1, 1), (2, 1), (0, 2), (3, 1), (0, 3), (1, 3)];
let ys = [(0, 0), (0, 1), (0, 2), (3, 1), (0, 3)];
let mut xs_d = Vec::new();
xs.iter().dedup_by(|x, y| x.1==y.1).fold((), |(), &elt| xs_d.push(elt));
assert_eq!(&xs_d, &ys);
}
#[test]
fn dedup_with_count() {
let xs: [i32; 8] = [0, 1, 1, 1, 2, 1, 3, 3];
let ys: [(usize, &i32); 5] = [(1, &0), (3, &1), (1, &2), (1, &1), (2, &3)];
it::assert_equal(ys.iter().cloned(), xs.iter().dedup_with_count());
let xs: [i32; 5] = [0, 0, 0, 0, 0];
let ys: [(usize, &i32); 1] = [(5, &0)];
it::assert_equal(ys.iter().cloned(), xs.iter().dedup_with_count());
}
#[test]
fn dedup_by_with_count() {
let xs = [(0, 0), (0, 1), (1, 1), (2, 1), (0, 2), (3, 1), (0, 3), (1, 3)];
let ys = [(1, &(0, 0)), (3, &(0, 1)), (1, &(0, 2)), (1, &(3, 1)), (2, &(0, 3))];
it::assert_equal(ys.iter().cloned(), xs.iter().dedup_by_with_count(|x, y| x.1==y.1));
let xs = [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)];
let ys = [( 5, &(0, 1))];
it::assert_equal(ys.iter().cloned(), xs.iter().dedup_by_with_count(|x, y| x.0==y.0));
}
#[test]
fn all_equal() {
assert!("".chars().all_equal());
assert!("A".chars().all_equal());
assert!(!"AABBCCC".chars().all_equal());
assert!("AAAAAAA".chars().all_equal());
for (_key, mut sub) in &"AABBCCC".chars().group_by(|&x| x) {
assert!(sub.all_equal());
}
}
#[test]
fn all_equal_value() {
assert_eq!("".chars().all_equal_value(), Err(None));
assert_eq!("A".chars().all_equal_value(), Ok('A'));
assert_eq!("AABBCCC".chars().all_equal_value(), Err(Some(('A', 'B'))));
assert_eq!("AAAAAAA".chars().all_equal_value(), Ok('A'));
{
let mut it = [1,2,3].iter().copied();
let result = it.all_equal_value();
assert_eq!(result, Err(Some((1, 2))));
let remaining = it.next();
assert_eq!(remaining, Some(3));
assert!(it.next().is_none());
}
}
#[test]
fn all_unique() {
assert!("ABCDEFGH".chars().all_unique());
assert!(!"ABCDEFGA".chars().all_unique());
assert!(::std::iter::empty::<usize>().all_unique());
}
#[test]
fn test_put_back_n() {
let xs = [0, 1, 1, 1, 2, 1, 3, 3];
let mut pb = put_back_n(xs.iter().cloned());
pb.next();
pb.next();
pb.put_back(1);
pb.put_back(0);
it::assert_equal(pb, xs.iter().cloned());
}
#[test]
fn tee() {
let xs = [0, 1, 2, 3];
let (mut t1, mut t2) = xs.iter().cloned().tee();
assert_eq!(t1.next(), Some(0));
assert_eq!(t2.next(), Some(0));
assert_eq!(t1.next(), Some(1));
assert_eq!(t1.next(), Some(2));
assert_eq!(t1.next(), Some(3));
assert_eq!(t1.next(), None);
assert_eq!(t2.next(), Some(1));
assert_eq!(t2.next(), Some(2));
assert_eq!(t1.next(), None);
assert_eq!(t2.next(), Some(3));
assert_eq!(t2.next(), None);
assert_eq!(t1.next(), None);
assert_eq!(t2.next(), None);
let (t1, t2) = xs.iter().cloned().tee();
it::assert_equal(t1, xs.iter().cloned());
it::assert_equal(t2, xs.iter().cloned());
let (t1, t2) = xs.iter().cloned().tee();
it::assert_equal(t1.zip(t2), xs.iter().cloned().zip(xs.iter().cloned()));
}
#[test]
fn test_rciter() {
let xs = [0, 1, 1, 1, 2, 1, 3, 5, 6];
let mut r1 = rciter(xs.iter().cloned());
let mut r2 = r1.clone();
assert_eq!(r1.next(), Some(0));
assert_eq!(r2.next(), Some(1));
let mut z = r1.zip(r2);
assert_eq!(z.next(), Some((1, 1)));
assert_eq!(z.next(), Some((2, 1)));
assert_eq!(z.next(), Some((3, 5)));
assert_eq!(z.next(), None);
// test intoiterator
let r1 = rciter(0..5);
let mut z = izip!(&r1, r1);
assert_eq!(z.next(), Some((0, 1)));
}
#[allow(deprecated)]
#[test]
fn trait_pointers() {
struct ByRef<'r, I: ?Sized>(&'r mut I) ;
impl<'r, X, I: ?Sized> Iterator for ByRef<'r, I> where
I: 'r + Iterator<Item=X>
{
type Item = X;
fn next(&mut self) -> Option<Self::Item>
{
self.0.next()
}
}
let mut it = Box::new(0..10) as Box<dyn Iterator<Item=i32>>;
assert_eq!(it.next(), Some(0));
{
/* make sure foreach works on non-Sized */
let jt: &mut dyn Iterator<Item = i32> = &mut *it;
assert_eq!(jt.next(), Some(1));
{
let mut r = ByRef(jt);
assert_eq!(r.next(), Some(2));
}
assert_eq!(jt.find_position(|x| *x == 4), Some((1, 4)));
jt.foreach(|_| ());
}
}
#[test]
fn merge_by() {
let odd : Vec<(u32, &str)> = vec![(1, "hello"), (3, "world"), (5, "!")];
let even = vec![(2, "foo"), (4, "bar"), (6, "baz")];
let expected = vec![(1, "hello"), (2, "foo"), (3, "world"), (4, "bar"), (5, "!"), (6, "baz")];
let results = odd.iter().merge_by(even.iter(), |a, b| a.0 <= b.0);
it::assert_equal(results, expected.iter());
}
#[test]
fn merge_by_btree() {
use std::collections::BTreeMap;
let mut bt1 = BTreeMap::new();
bt1.insert("hello", 1);
bt1.insert("world", 3);
let mut bt2 = BTreeMap::new();
bt2.insert("foo", 2);
bt2.insert("bar", 4);
let results = bt1.into_iter().merge_by(bt2.into_iter(), |a, b| a.0 <= b.0 );
let expected = vec![("bar", 4), ("foo", 2), ("hello", 1), ("world", 3)];
it::assert_equal(results, expected.into_iter());
}
#[allow(deprecated)]
#[test]
fn kmerge() {
let its = (0..4).map(|s| (s..10).step(4));
it::assert_equal(its.kmerge(), 0..10);
}
#[allow(deprecated)]
#[test]
fn kmerge_2() {
let its = vec![3, 2, 1, 0].into_iter().map(|s| (s..10).step(4));
it::assert_equal(its.kmerge(), 0..10);
}
#[test]
fn kmerge_empty() {
let its = (0..4).map(|_| 0..0);
assert_eq!(its.kmerge().next(), None);
}
#[test]
fn kmerge_size_hint() {
let its = (0..5).map(|_| (0..10));
assert_eq!(its.kmerge().size_hint(), (50, Some(50)));
}
#[test]
fn kmerge_empty_size_hint() {
let its = (0..5).map(|_| (0..0));
assert_eq!(its.kmerge().size_hint(), (0, Some(0)));
}
#[test]
fn join() {
let many = [1, 2, 3];
let one = [1];
let none: Vec<i32> = vec![];
assert_eq!(many.iter().join(", "), "1, 2, 3");
assert_eq!( one.iter().join(", "), "1");
assert_eq!(none.iter().join(", "), "");
}
#[test]
fn sorted_unstable_by() {
let sc = [3, 4, 1, 2].iter().cloned().sorted_by(|&a, &b| {
a.cmp(&b)
});
it::assert_equal(sc, vec![1, 2, 3, 4]);
let v = (0..5).sorted_unstable_by(|&a, &b| a.cmp(&b).reverse());
it::assert_equal(v, vec![4, 3, 2, 1, 0]);
}
#[test]
fn sorted_unstable_by_key() {
let sc = [3, 4, 1, 2].iter().cloned().sorted_unstable_by_key(|&x| x);
it::assert_equal(sc, vec![1, 2, 3, 4]);
let v = (0..5).sorted_unstable_by_key(|&x| -x);
it::assert_equal(v, vec![4, 3, 2, 1, 0]);
}
#[test]
fn sorted_by() {
let sc = [3, 4, 1, 2].iter().cloned().sorted_by(|&a, &b| {
a.cmp(&b)
});
it::assert_equal(sc, vec![1, 2, 3, 4]);
let v = (0..5).sorted_by(|&a, &b| a.cmp(&b).reverse());
it::assert_equal(v, vec![4, 3, 2, 1, 0]);
}
qc::quickcheck! {
fn k_smallest_range(n: u64, m: u16, k: u16) -> () {
// u16 is used to constrain k and m to 0..2¹⁶,
// otherwise the test could use too much memory.
let (k, m) = (k as u64, m as u64);
// Generate a random permutation of n..n+m
let i = {
let mut v: Vec<u64> = (n..n.saturating_add(m)).collect();
v.shuffle(&mut thread_rng());
v.into_iter()
};
// Check that taking the k smallest elements yields n..n+min(k, m)
it::assert_equal(
i.k_smallest(k as usize),
n..n.saturating_add(min(k, m))
);
}
}
#[derive(Clone, Debug)]
struct RandIter<T: 'static + Clone + Send, R: 'static + Clone + Rng + SeedableRng + Send = StdRng> {
idx: usize,
len: usize,
rng: R,
_t: PhantomData<T>
}
impl<T: Clone + Send, R: Clone + Rng + SeedableRng + Send> Iterator for RandIter<T, R>
where Standard: Distribution<T> {
type Item = T;
fn next(&mut self) -> Option<T> {
if self.idx == self.len {
None
} else {
self.idx += 1;
Some(self.rng.gen())
}
}
}
impl<T: Clone + Send, R: Clone + Rng + SeedableRng + Send> qc::Arbitrary for RandIter<T, R> {
fn arbitrary<G: qc::Gen>(g: &mut G) -> Self {
RandIter {
idx: 0,
len: g.size(),
rng: R::seed_from_u64(g.next_u64()),
_t : PhantomData{},
}
}
}
// Check that taking the k smallest is the same as
// sorting then taking the k first elements
fn k_smallest_sort<I>(i: I, k: u16)
where
I: Iterator + Clone,
I::Item: Ord + Debug,
{
let j = i.clone();
let k = k as usize;
it::assert_equal(
i.k_smallest(k),
j.sorted().take(k)
)
}
macro_rules! generic_test {
($f:ident, $($t:ty),+) => {
$(paste::item! {
qc::quickcheck! {
fn [< $f _ $t >](i: RandIter<$t>, k: u16) -> () {
$f(i, k)
}
}
})+
};
}
generic_test!(k_smallest_sort, u8, u16, u32, u64, i8, i16, i32, i64);
#[test]
fn sorted_by_key() {
let sc = [3, 4, 1, 2].iter().cloned().sorted_by_key(|&x| x);
it::assert_equal(sc, vec![1, 2, 3, 4]);
let v = (0..5).sorted_by_key(|&x| -x);
it::assert_equal(v, vec![4, 3, 2, 1, 0]);
}
#[test]
fn sorted_by_cached_key() {
// Track calls to key function
let mut ncalls = 0;
let sorted = [3, 4, 1, 2].iter().cloned().sorted_by_cached_key(|&x| {
ncalls += 1;
x.to_string()
});
it::assert_equal(sorted, vec![1, 2, 3, 4]);
// Check key function called once per element
assert_eq!(ncalls, 4);
let mut ncalls = 0;
let sorted = (0..5).sorted_by_cached_key(|&x| {
ncalls += 1;
-x
});
it::assert_equal(sorted, vec![4, 3, 2, 1, 0]);
// Check key function called once per element
assert_eq!(ncalls, 5);
}
#[test]
fn test_multipeek() {
let nums = vec![1u8,2,3,4,5];
let mp = multipeek(nums.iter().copied());
assert_eq!(nums, mp.collect::<Vec<_>>());
let mut mp = multipeek(nums.iter().copied());
assert_eq!(mp.peek(), Some(&1));
assert_eq!(mp.next(), Some(1));
assert_eq!(mp.peek(), Some(&2));
assert_eq!(mp.peek(), Some(&3));
assert_eq!(mp.next(), Some(2));
assert_eq!(mp.peek(), Some(&3));
assert_eq!(mp.peek(), Some(&4));
assert_eq!(mp.peek(), Some(&5));
assert_eq!(mp.peek(), None);
assert_eq!(mp.next(), Some(3));
assert_eq!(mp.next(), Some(4));
assert_eq!(mp.peek(), Some(&5));
assert_eq!(mp.peek(), None);
assert_eq!(mp.next(), Some(5));
assert_eq!(mp.next(), None);
assert_eq!(mp.peek(), None);
}
#[test]
fn test_multipeek_reset() {
let data = [1, 2, 3, 4];
let mut mp = multipeek(cloned(&data));
assert_eq!(mp.peek(), Some(&1));
assert_eq!(mp.next(), Some(1));
assert_eq!(mp.peek(), Some(&2));
assert_eq!(mp.peek(), Some(&3));
mp.reset_peek();
assert_eq!(mp.peek(), Some(&2));
assert_eq!(mp.next(), Some(2));
}
#[test]
fn test_multipeek_peeking_next() {
use crate::it::PeekingNext;
let nums = vec![1u8,2,3,4,5,6,7];
let mut mp = multipeek(nums.iter().copied());
assert_eq!(mp.peeking_next(|&x| x != 0), Some(1));
assert_eq!(mp.next(), Some(2));
assert_eq!(mp.peek(), Some(&3));
assert_eq!(mp.peek(), Some(&4));
assert_eq!(mp.peeking_next(|&x| x == 3), Some(3));
assert_eq!(mp.peek(), Some(&4));
assert_eq!(mp.peeking_next(|&x| x != 4), None);
assert_eq!(mp.peeking_next(|&x| x == 4), Some(4));
assert_eq!(mp.peek(), Some(&5));
assert_eq!(mp.peek(), Some(&6));
assert_eq!(mp.peeking_next(|&x| x != 5), None);
assert_eq!(mp.peek(), Some(&7));
assert_eq!(mp.peeking_next(|&x| x == 5), Some(5));
assert_eq!(mp.peeking_next(|&x| x == 6), Some(6));
assert_eq!(mp.peek(), Some(&7));
assert_eq!(mp.peek(), None);
assert_eq!(mp.next(), Some(7));
assert_eq!(mp.peek(), None);
}
#[test]
fn test_peek_nth() {
let nums = vec![1u8,2,3,4,5];
let iter = peek_nth(nums.iter().copied());
assert_eq!(nums, iter.collect::<Vec<_>>());
let mut iter = peek_nth(nums.iter().copied());
assert_eq!(iter.peek_nth(0), Some(&1));
assert_eq!(iter.peek_nth(0), Some(&1));
assert_eq!(iter.next(), Some(1));
assert_eq!(iter.peek_nth(0), Some(&2));
assert_eq!(iter.peek_nth(1), Some(&3));
assert_eq!(iter.next(), Some(2));
assert_eq!(iter.peek_nth(0), Some(&3));
assert_eq!(iter.peek_nth(1), Some(&4));
assert_eq!(iter.peek_nth(2), Some(&5));
assert_eq!(iter.peek_nth(3), None);
assert_eq!(iter.next(), Some(3));
assert_eq!(iter.next(), Some(4));
assert_eq!(iter.peek_nth(0), Some(&5));
assert_eq!(iter.peek_nth(1), None);
assert_eq!(iter.next(), Some(5));
assert_eq!(iter.next(), None);
assert_eq!(iter.peek_nth(0), None);
assert_eq!(iter.peek_nth(1), None);
}
#[test]
fn test_peek_nth_peeking_next() {
use it::PeekingNext;
let nums = vec![1u8,2,3,4,5,6,7];
let mut iter = peek_nth(nums.iter().copied());
assert_eq!(iter.peeking_next(|&x| x != 0), Some(1));
assert_eq!(iter.next(), Some(2));
assert_eq!(iter.peek_nth(0), Some(&3));
assert_eq!(iter.peek_nth(1), Some(&4));
assert_eq!(iter.peeking_next(|&x| x == 3), Some(3));
assert_eq!(iter.peek(), Some(&4));
assert_eq!(iter.peeking_next(|&x| x != 4), None);
assert_eq!(iter.peeking_next(|&x| x == 4), Some(4));
assert_eq!(iter.peek_nth(0), Some(&5));
assert_eq!(iter.peek_nth(1), Some(&6));
assert_eq!(iter.peeking_next(|&x| x != 5), None);
assert_eq!(iter.peek(), Some(&5));
assert_eq!(iter.peeking_next(|&x| x == 5), Some(5));
assert_eq!(iter.peeking_next(|&x| x == 6), Some(6));
assert_eq!(iter.peek_nth(0), Some(&7));
assert_eq!(iter.peek_nth(1), None);
assert_eq!(iter.next(), Some(7));
assert_eq!(iter.peek(), None);
}
#[test]
fn pad_using() {
it::assert_equal((0..0).pad_using(1, |_| 1), 1..2);
let v: Vec<usize> = vec![0, 1, 2];
let r = v.into_iter().pad_using(5, |n| n);
it::assert_equal(r, vec![0, 1, 2, 3, 4]);
let v: Vec<usize> = vec![0, 1, 2];
let r = v.into_iter().pad_using(1, |_| panic!());
it::assert_equal(r, vec![0, 1, 2]);
}
#[test]
fn group_by() {
for (ch1, sub) in &"AABBCCC".chars().group_by(|&x| x) {
for ch2 in sub {
assert_eq!(ch1, ch2);
}
}
for (ch1, sub) in &"AAABBBCCCCDDDD".chars().group_by(|&x| x) {
for ch2 in sub {
assert_eq!(ch1, ch2);
if ch1 == 'C' {
break;
}
}
}
let toupper = |ch: &char| ch.to_uppercase().next().unwrap();
// try all possible orderings
for indices in permutohedron::Heap::new(&mut [0, 1, 2, 3]) {
let groups = "AaaBbbccCcDDDD".chars().group_by(&toupper);
let mut subs = groups.into_iter().collect_vec();
for &idx in &indices[..] {
let (key, text) = match idx {
0 => ('A', "Aaa".chars()),
1 => ('B', "Bbb".chars()),
2 => ('C', "ccCc".chars()),
3 => ('D', "DDDD".chars()),
_ => unreachable!(),
};
assert_eq!(key, subs[idx].0);
it::assert_equal(&mut subs[idx].1, text);
}
}
let groups = "AAABBBCCCCDDDD".chars().group_by(|&x| x);
let mut subs = groups.into_iter().map(|(_, g)| g).collect_vec();
let sd = subs.pop().unwrap();
let sc = subs.pop().unwrap();
let sb = subs.pop().unwrap();
let sa = subs.pop().unwrap();
for (a, b, c, d) in multizip((sa, sb, sc, sd)) {
assert_eq!(a, 'A');
assert_eq!(b, 'B');
assert_eq!(c, 'C');
assert_eq!(d, 'D');
}
// check that the key closure is called exactly n times
{
let mut ntimes = 0;
let text = "AABCCC";
for (_, sub) in &text.chars().group_by(|&x| { ntimes += 1; x}) {
for _ in sub {
}
}
assert_eq!(ntimes, text.len());
}
{
let mut ntimes = 0;
let text = "AABCCC";
for _ in &text.chars().group_by(|&x| { ntimes += 1; x}) {
}
assert_eq!(ntimes, text.len());
}
{
let text = "ABCCCDEEFGHIJJKK";
let gr = text.chars().group_by(|&x| x);
it::assert_equal(gr.into_iter().flat_map(|(_, sub)| sub), text.chars());
}
}
#[test]
fn group_by_lazy_2() {
let data = vec![0, 1];
let groups = data.iter().group_by(|k| *k);
let gs = groups.into_iter().collect_vec();
it::assert_equal(data.iter(), gs.into_iter().flat_map(|(_k, g)| g));
let data = vec![0, 1, 1, 0, 0];
let groups = data.iter().group_by(|k| *k);
let mut gs = groups.into_iter().collect_vec();
gs[1..].reverse();
it::assert_equal(&[0, 0, 0, 1, 1], gs.into_iter().flat_map(|(_, g)| g));
let grouper = data.iter().group_by(|k| *k);
let mut groups = Vec::new();
for (k, group) in &grouper {
if *k == 1 {
groups.push(group);
}
}
it::assert_equal(&mut groups[0], &[1, 1]);
let data = vec![0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3];
let grouper = data.iter().group_by(|k| *k);
let mut groups = Vec::new();
for (i, (_, group)) in grouper.into_iter().enumerate() {
if i < 2 {
groups.push(group);
} else if i < 4 {
for _ in group {
}
} else {
groups.push(group);
}
}
it::assert_equal(&mut groups[0], &[0, 0, 0]);
it::assert_equal(&mut groups[1], &[1, 1]);
it::assert_equal(&mut groups[2], &[3, 3]);
// use groups as chunks
let data = vec![0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3];
let mut i = 0;
let grouper = data.iter().group_by(move |_| { let k = i / 3; i += 1; k });
for (i, group) in &grouper {
match i {
0 => it::assert_equal(group, &[0, 0, 0]),
1 => it::assert_equal(group, &[1, 1, 0]),
2 => it::assert_equal(group, &[0, 2, 2]),
3 => it::assert_equal(group, &[3, 3]),
_ => unreachable!(),
}
}
}
#[test]
fn group_by_lazy_3() {
// test consuming each group on the lap after it was produced
let data = vec![0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2];
let grouper = data.iter().group_by(|elt| *elt);
let mut last = None;
for (key, group) in &grouper {
if let Some(gr) = last.take() {
for elt in gr {
assert!(elt != key && i32::abs(elt - key) == 1);
}
}
last = Some(group);
}
}
#[test]
fn chunks() {
let data = vec![0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3];
let grouper = data.iter().chunks(3);
for (i, chunk) in grouper.into_iter().enumerate() {
match i {
0 => it::assert_equal(chunk, &[0, 0, 0]),
1 => it::assert_equal(chunk, &[1, 1, 0]),
2 => it::assert_equal(chunk, &[0, 2, 2]),
3 => it::assert_equal(chunk, &[3, 3]),
_ => unreachable!(),
}
}
}
#[test]
fn concat_empty() {
let data: Vec<Vec<()>> = Vec::new();
assert_eq!(data.into_iter().concat(), Vec::new())
}
#[test]
fn concat_non_empty() {
let data = vec![vec![1,2,3], vec![4,5,6], vec![7,8,9]];
assert_eq!(data.into_iter().concat(), vec![1,2,3,4,5,6,7,8,9])
}
#[test]
fn combinations() {
assert!((1..3).combinations(5).next().is_none());
let it = (1..3).combinations(2);
it::assert_equal(it, vec![
vec![1, 2],
]);
let it = (1..5).combinations(2);
it::assert_equal(it, vec![
vec![1, 2],
vec![1, 3],
vec![1, 4],
vec![2, 3],
vec![2, 4],
vec![3, 4],
]);
it::assert_equal((0..0).tuple_combinations::<(_, _)>(), <Vec<_>>::new());
it::assert_equal((0..1).tuple_combinations::<(_, _)>(), <Vec<_>>::new());
it::assert_equal((0..2).tuple_combinations::<(_, _)>(), vec![(0, 1)]);
it::assert_equal((0..0).combinations(2), <Vec<Vec<_>>>::new());
it::assert_equal((0..1).combinations(1), vec![vec![0]]);
it::assert_equal((0..2).combinations(1), vec![vec![0], vec![1]]);
it::assert_equal((0..2).combinations(2), vec![vec![0, 1]]);
}
#[test]
fn combinations_of_too_short() {
for i in 1..10 {
assert!((0..0).combinations(i).next().is_none());
assert!((0..i - 1).combinations(i).next().is_none());
}
}
#[test]
fn combinations_zero() {
it::assert_equal((1..3).combinations(0), vec![vec![]]);
it::assert_equal((0..0).combinations(0), vec![vec![]]);
}
#[test]
fn permutations_zero() {
it::assert_equal((1..3).permutations(0), vec![vec![]]);
it::assert_equal((0..0).permutations(0), vec![vec![]]);
}
#[test]
fn combinations_with_replacement() {
// Pool smaller than n
it::assert_equal((0..1).combinations_with_replacement(2), vec![vec![0, 0]]);
// Pool larger than n
it::assert_equal(
(0..3).combinations_with_replacement(2),
vec![
vec![0, 0],
vec![0, 1],
vec![0, 2],
vec![1, 1],
vec![1, 2],
vec![2, 2],
],
);
// Zero size
it::assert_equal(
(0..3).combinations_with_replacement(0),
vec![vec![]],
);
// Zero size on empty pool
it::assert_equal(
(0..0).combinations_with_replacement(0),
vec![vec![]],
);
// Empty pool
it::assert_equal(
(0..0).combinations_with_replacement(2),
<Vec<Vec<_>>>::new(),
);
}
#[test]
fn powerset() {
it::assert_equal((0..0).powerset(), vec![vec![]]);
it::assert_equal((0..1).powerset(), vec![vec![], vec![0]]);
it::assert_equal((0..2).powerset(), vec![vec![], vec![0], vec![1], vec![0, 1]]);
it::assert_equal((0..3).powerset(), vec![
vec![],
vec![0], vec![1], vec![2],
vec![0, 1], vec![0, 2], vec![1, 2],
vec![0, 1, 2]
]);
assert_eq!((0..4).powerset().count(), 1 << 4);
assert_eq!((0..8).powerset().count(), 1 << 8);
assert_eq!((0..16).powerset().count(), 1 << 16);
}
#[test]
fn diff_mismatch() {
let a = vec![1, 2, 3, 4];
let b = vec![1.0, 5.0, 3.0, 4.0];
let b_map = b.into_iter().map(|f| f as i32);
let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b);
assert!(match diff {
Some(it::Diff::FirstMismatch(1, _, from_diff)) =>
from_diff.collect::<Vec<_>>() == vec![5, 3, 4],
_ => false,
});
}
#[test]
fn diff_longer() {
let a = vec![1, 2, 3, 4];
let b = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
let b_map = b.into_iter().map(|f| f as i32);
let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b);
assert!(match diff {
Some(it::Diff::Longer(_, remaining)) =>
remaining.collect::<Vec<_>>() == vec![5, 6],
_ => false,
});
}
#[test]
fn diff_shorter() {
let a = vec![1, 2, 3, 4];
let b = vec![1.0, 2.0];
let b_map = b.into_iter().map(|f| f as i32);
let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b);
assert!(match diff {
Some(it::Diff::Shorter(len, _)) => len == 2,
_ => false,
});
}
#[test]
fn extrema_set() {
use std::cmp::Ordering;
// A peculiar type: Equality compares both tuple items, but ordering only the
// first item. Used to distinguish equal elements.
#[derive(Clone, Debug, PartialEq, Eq)]
struct Val(u32, u32);
impl PartialOrd<Val> for Val {
fn partial_cmp(&self, other: &Val) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl Ord for Val {
fn cmp(&self, other: &Val) -> Ordering {
self.0.cmp(&other.0)
}
}
assert_eq!(None::<u32>.iter().min_set(), Vec::<&u32>::new());
assert_eq!(None::<u32>.iter().max_set(), Vec::<&u32>::new());
assert_eq!(Some(1u32).iter().min_set(), vec![&1]);
assert_eq!(Some(1u32).iter().max_set(), vec![&1]);
let data = vec![Val(0, 1), Val(2, 0), Val(0, 2), Val(1, 0), Val(2, 1)];
let min_set = data.iter().min_set();
assert_eq!(min_set, vec![&Val(0, 1), &Val(0, 2)]);
let min_set_by_key = data.iter().min_set_by_key(|v| v.1);
assert_eq!(min_set_by_key, vec![&Val(2, 0), &Val(1, 0)]);
let min_set_by = data.iter().min_set_by(|x, y| x.1.cmp(&y.1));
assert_eq!(min_set_by, vec![&Val(2, 0), &Val(1, 0)]);
let max_set = data.iter().max_set();
assert_eq!(max_set, vec![&Val(2, 0), &Val(2, 1)]);
let max_set_by_key = data.iter().max_set_by_key(|v| v.1);
assert_eq!(max_set_by_key, vec![&Val(0, 2)]);
let max_set_by = data.iter().max_set_by(|x, y| x.1.cmp(&y.1));
assert_eq!(max_set_by, vec![&Val(0, 2)]);
}
#[test]
fn minmax() {
use std::cmp::Ordering;
use crate::it::MinMaxResult;
// A peculiar type: Equality compares both tuple items, but ordering only the
// first item. This is so we can check the stability property easily.
#[derive(Clone, Debug, PartialEq, Eq)]
struct Val(u32, u32);
impl PartialOrd<Val> for Val {
fn partial_cmp(&self, other: &Val) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl Ord for Val {
fn cmp(&self, other: &Val) -> Ordering {
self.0.cmp(&other.0)
}
}
assert_eq!(None::<Option<u32>>.iter().minmax(), MinMaxResult::NoElements);
assert_eq!(Some(1u32).iter().minmax(), MinMaxResult::OneElement(&1));
let data = vec![Val(0, 1), Val(2, 0), Val(0, 2), Val(1, 0), Val(2, 1)];
let minmax = data.iter().minmax();
assert_eq!(minmax, MinMaxResult::MinMax(&Val(0, 1), &Val(2, 1)));
let (min, max) = data.iter().minmax_by_key(|v| v.1).into_option().unwrap();
assert_eq!(min, &Val(2, 0));
assert_eq!(max, &Val(0, 2));
let (min, max) = data.iter().minmax_by(|x, y| x.1.cmp(&y.1)).into_option().unwrap();
assert_eq!(min, &Val(2, 0));
assert_eq!(max, &Val(0, 2));
}
#[test]
fn format() {
let data = [0, 1, 2, 3];
let ans1 = "0, 1, 2, 3";
let ans2 = "0--1--2--3";
let t1 = format!("{}", data.iter().format(", "));
assert_eq!(t1, ans1);
let t2 = format!("{:?}", data.iter().format("--"));
assert_eq!(t2, ans2);
let dataf = [1.1, 5.71828, -22.];
let t3 = format!("{:.2e}", dataf.iter().format(", "));
assert_eq!(t3, "1.10e0, 5.72e0, -2.20e1");
}
#[test]
fn while_some() {
let ns = (1..10).map(|x| if x % 5 != 0 { Some(x) } else { None })
.while_some();
it::assert_equal(ns, vec![1, 2, 3, 4]);
}
#[allow(deprecated)]
#[test]
fn fold_while() {
let mut iterations = 0;
let vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let sum = vec.into_iter().fold_while(0, |acc, item| {
iterations += 1;
let new_sum = acc + item;
if new_sum <= 20 {
FoldWhile::Continue(new_sum)
} else {
FoldWhile::Done(acc)
}
}).into_inner();
assert_eq!(iterations, 6);
assert_eq!(sum, 15);
}
#[test]
fn tree_fold1() {
let x = [
"",
"0",
"0 1 x",
"0 1 x 2 x",
"0 1 x 2 3 x x",
"0 1 x 2 3 x x 4 x",
"0 1 x 2 3 x x 4 5 x x",
"0 1 x 2 3 x x 4 5 x 6 x x",
"0 1 x 2 3 x x 4 5 x 6 7 x x x",
"0 1 x 2 3 x x 4 5 x 6 7 x x x 8 x",
"0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x x",
"0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 x x",
"0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x x",
"0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 x x",
"0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x x x",
"0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x 14 x x x",
"0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x 14 15 x x x x",
];
for (i, &s) in x.iter().enumerate() {
let expected = if s.is_empty() { None } else { Some(s.to_string()) };
let num_strings = (0..i).map(|x| x.to_string());
let actual = num_strings.tree_fold1(|a, b| format!("{} {} x", a, b));
assert_eq!(actual, expected);
}
}
#[test]
fn exactly_one_question_mark_syntax_works() {
exactly_one_question_mark_return().unwrap_err();
}
fn exactly_one_question_mark_return() -> Result<(), ExactlyOneError<std::slice::Iter<'static, ()>>> {
[].iter().exactly_one()?;
Ok(())
}
#[test]
fn multiunzip() {
let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = [(0, 1, 2), (3, 4, 5), (6, 7, 8)].iter().cloned().multiunzip();
assert_eq!((a, b, c), (vec![0, 3, 6], vec![1, 4, 7], vec![2, 5, 8]));
let (): () = [(), (), ()].iter().cloned().multiunzip();
let t: (Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>, Vec<_>) = [(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)].iter().cloned().multiunzip();
assert_eq!(t, (vec![0], vec![1], vec![2], vec![3], vec![4], vec![5], vec![6], vec![7], vec![8], vec![9], vec![10], vec![11]));
}