use rand_core::{RngCore, SeedableRng};
use rand_pcg::{Lcg128Xsl64, Pcg64};
#[test]
fn test_lcg128xsl64_advancing() {
for seed in 0..20 {
let mut rng1 = Lcg128Xsl64::seed_from_u64(seed);
let mut rng2 = rng1.clone();
for _ in 0..20 {
rng1.next_u64();
}
rng2.advance(20);
assert_eq!(rng1, rng2);
}
}
#[test]
fn test_lcg128xsl64_construction() {
// Test that various construction techniques produce a working RNG.
#[rustfmt::skip]
let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16,
17,18,19,20, 21,22,23,24, 25,26,27,28, 29,30,31,32];
let mut rng1 = Lcg128Xsl64::from_seed(seed);
assert_eq!(rng1.next_u64(), 8740028313290271629);
let mut rng2 = Lcg128Xsl64::from_rng(&mut rng1).unwrap();
assert_eq!(rng2.next_u64(), 1922280315005786345);
let mut rng3 = Lcg128Xsl64::seed_from_u64(0);
assert_eq!(rng3.next_u64(), 2354861276966075475);
// This is the same as Lcg128Xsl64, so we only have a single test:
let mut rng4 = Pcg64::seed_from_u64(0);
assert_eq!(rng4.next_u64(), 2354861276966075475);
}
#[test]
fn test_lcg128xsl64_true_values() {
// Numbers copied from official test suite (C version).
let mut rng = Lcg128Xsl64::new(42, 54);
let mut results = [0u64; 6];
for i in results.iter_mut() {
*i = rng.next_u64();
}
let expected: [u64; 6] = [
0x86b1da1d72062b68,
0x1304aa46c9853d39,
0xa3670e9e0dd50358,
0xf9090e529a7dae00,
0xc85b9fd837996f2c,
0x606121f8e3919196,
];
assert_eq!(results, expected);
}
#[cfg(feature = "serde1")]
#[test]
fn test_lcg128xsl64_serde() {
use bincode;
use std::io::{BufReader, BufWriter};
let mut rng = Lcg128Xsl64::seed_from_u64(0);
let buf: Vec<u8> = Vec::new();
let mut buf = BufWriter::new(buf);
bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
let buf = buf.into_inner().unwrap();
let mut read = BufReader::new(&buf[..]);
let mut deserialized: Lcg128Xsl64 =
bincode::deserialize_from(&mut read).expect("Could not deserialize");
for _ in 0..16 {
assert_eq!(rng.next_u64(), deserialized.next_u64());
}
}