// Adapted from https://github.com/Alexhuszagh/rust-lexical.
//! Compare the mantissa to the halfway representation of the float.
//!
//! Compares the actual significant digits of the mantissa to the
//! theoretical digits from `b+h`, scaled into the proper range.
use super::bignum::*;
use super::digit::*;
use super::exponent::*;
use super::float::*;
use super::math::*;
use super::num::*;
use super::rounding::*;
use core::{cmp, mem};
// MANTISSA
/// Parse the full mantissa into a big integer.
///
/// Max digits is the maximum number of digits plus one.
fn parse_mantissa<F>(integer: &[u8], fraction: &[u8]) -> Bigint
where
F: Float,
{
// Main loop
let small_powers = POW10_LIMB;
let step = small_powers.len() - 2;
let max_digits = F::MAX_DIGITS - 1;
let mut counter = 0;
let mut value: Limb = 0;
let mut i: usize = 0;
let mut result = Bigint::default();
// Iteratively process all the data in the mantissa.
for &digit in integer.iter().chain(fraction) {
// We've parsed the max digits using small values, add to bignum
if counter == step {
result.imul_small(small_powers[counter]);
result.iadd_small(value);
counter = 0;
value = 0;
}
value *= 10;
value += as_limb(to_digit(digit).unwrap());
i += 1;
counter += 1;
if i == max_digits {
break;
}
}
// We will always have a remainder, as long as we entered the loop
// once, or counter % step is 0.
if counter != 0 {
result.imul_small(small_powers[counter]);
result.iadd_small(value);
}
// If we have any remaining digits after the last value, we need
// to add a 1 after the rest of the array, it doesn't matter where,
// just move it up. This is good for the worst-possible float
// representation. We also need to return an index.
// Since we already trimmed trailing zeros, we know there has
// to be a non-zero digit if there are any left.
if i < integer.len() + fraction.len() {
result.imul_small(10);
result.iadd_small(1);
}
result
}
// FLOAT OPS
/// Calculate `b` from a representation of `b` as a float.
#[inline]
pub(super) fn b_extended<F: Float>(f: F) -> ExtendedFloat {
ExtendedFloat::from_float(f)
}
/// Calculate `b+h` from a representation of `b` as a float.
#[inline]
pub(super) fn bh_extended<F: Float>(f: F) -> ExtendedFloat {
// None of these can overflow.
let b = b_extended(f);
ExtendedFloat {
mant: (b.mant << 1) + 1,
exp: b.exp - 1,
}
}
// ROUNDING
/// Custom round-nearest, tie-event algorithm for bhcomp.
#[inline]
fn round_nearest_tie_even(fp: &mut ExtendedFloat, shift: i32, is_truncated: bool) {
let (mut is_above, mut is_halfway) = round_nearest(fp, shift);
if is_halfway && is_truncated {
is_above = true;
is_halfway = false;
}
tie_even(fp, is_above, is_halfway);
}
// BHCOMP
/// Calculate the mantissa for a big integer with a positive exponent.
fn large_atof<F>(mantissa: Bigint, exponent: i32) -> F
where
F: Float,
{
let bits = mem::size_of::<u64>() * 8;
// Simple, we just need to multiply by the power of the radix.
// Now, we can calculate the mantissa and the exponent from this.
// The binary exponent is the binary exponent for the mantissa
// shifted to the hidden bit.
let mut bigmant = mantissa;
bigmant.imul_pow10(exponent as u32);
// Get the exact representation of the float from the big integer.
let (mant, is_truncated) = bigmant.hi64();
let exp = bigmant.bit_length() as i32 - bits as i32;
let mut fp = ExtendedFloat { mant, exp };
fp.round_to_native::<F, _>(|fp, shift| round_nearest_tie_even(fp, shift, is_truncated));
into_float(fp)
}
/// Calculate the mantissa for a big integer with a negative exponent.
///
/// This invokes the comparison with `b+h`.
fn small_atof<F>(mantissa: Bigint, exponent: i32, f: F) -> F
where
F: Float,
{
// Get the significant digits and radix exponent for the real digits.
let mut real_digits = mantissa;
let real_exp = exponent;
debug_assert!(real_exp < 0);
// Get the significant digits and the binary exponent for `b+h`.
let theor = bh_extended(f);
let mut theor_digits = Bigint::from_u64(theor.mant);
let theor_exp = theor.exp;
// We need to scale the real digits and `b+h` digits to be the same
// order. We currently have `real_exp`, in `radix`, that needs to be
// shifted to `theor_digits` (since it is negative), and `theor_exp`
// to either `theor_digits` or `real_digits` as a power of 2 (since it
// may be positive or negative). Try to remove as many powers of 2
// as possible. All values are relative to `theor_digits`, that is,
// reflect the power you need to multiply `theor_digits` by.
// Can remove a power-of-two, since the radix is 10.
// Both are on opposite-sides of equation, can factor out a
// power of two.
//
// Example: 10^-10, 2^-10 -> ( 0, 10, 0)
// Example: 10^-10, 2^-15 -> (-5, 10, 0)
// Example: 10^-10, 2^-5 -> ( 5, 10, 0)
// Example: 10^-10, 2^5 -> (15, 10, 0)
let binary_exp = theor_exp - real_exp;
let halfradix_exp = -real_exp;
let radix_exp = 0;
// Carry out our multiplication.
if halfradix_exp != 0 {
theor_digits.imul_pow5(halfradix_exp as u32);
}
if radix_exp != 0 {
theor_digits.imul_pow10(radix_exp as u32);
}
if binary_exp > 0 {
theor_digits.imul_pow2(binary_exp as u32);
} else if binary_exp < 0 {
real_digits.imul_pow2(-binary_exp as u32);
}
// Compare real digits to theoretical digits and round the float.
match real_digits.compare(&theor_digits) {
cmp::Ordering::Greater => f.next_positive(),
cmp::Ordering::Less => f,
cmp::Ordering::Equal => f.round_positive_even(),
}
}
/// Calculate the exact value of the float.
///
/// Note: fraction must not have trailing zeros.
pub(crate) fn bhcomp<F>(b: F, integer: &[u8], mut fraction: &[u8], exponent: i32) -> F
where
F: Float,
{
// Calculate the number of integer digits and use that to determine
// where the significant digits start in the fraction.
let integer_digits = integer.len();
let fraction_digits = fraction.len();
let digits_start = if integer_digits == 0 {
let start = fraction.iter().take_while(|&x| *x == b'0').count();
fraction = &fraction[start..];
start
} else {
0
};
let sci_exp = scientific_exponent(exponent, integer_digits, digits_start);
let count = F::MAX_DIGITS.min(integer_digits + fraction_digits - digits_start);
let scaled_exponent = sci_exp + 1 - count as i32;
let mantissa = parse_mantissa::<F>(integer, fraction);
if scaled_exponent >= 0 {
large_atof(mantissa, scaled_exponent)
} else {
small_atof(mantissa, scaled_exponent, b)
}
}