use super::Adler32Imp;
/// Resolves update implementation if CPU supports avx2 instructions.
pub fn get_imp() -> Option<Adler32Imp> {
get_imp_inner()
}
#[inline]
#[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))]
fn get_imp_inner() -> Option<Adler32Imp> {
if std::is_x86_feature_detected!("avx2") {
Some(imp::update)
} else {
None
}
}
#[inline]
#[cfg(all(
target_feature = "avx2",
not(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))
))]
fn get_imp_inner() -> Option<Adler32Imp> {
Some(imp::update)
}
#[inline]
#[cfg(all(
not(target_feature = "avx2"),
not(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))
))]
fn get_imp_inner() -> Option<Adler32Imp> {
None
}
#[cfg(all(
any(target_arch = "x86", target_arch = "x86_64"),
any(feature = "std", target_feature = "avx2")
))]
mod imp {
const MOD: u32 = 65521;
const NMAX: usize = 5552;
const BLOCK_SIZE: usize = 32;
const CHUNK_SIZE: usize = NMAX / BLOCK_SIZE * BLOCK_SIZE;
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
pub fn update(a: u16, b: u16, data: &[u8]) -> (u16, u16) {
unsafe { update_imp(a, b, data) }
}
#[inline]
#[target_feature(enable = "avx2")]
unsafe fn update_imp(a: u16, b: u16, data: &[u8]) -> (u16, u16) {
let mut a = a as u32;
let mut b = b as u32;
let chunks = data.chunks_exact(CHUNK_SIZE);
let remainder = chunks.remainder();
for chunk in chunks {
update_chunk_block(&mut a, &mut b, chunk);
}
update_block(&mut a, &mut b, remainder);
(a as u16, b as u16)
}
#[inline]
unsafe fn update_chunk_block(a: &mut u32, b: &mut u32, chunk: &[u8]) {
debug_assert_eq!(
chunk.len(),
CHUNK_SIZE,
"Unexpected chunk size (expected {}, got {})",
CHUNK_SIZE,
chunk.len()
);
reduce_add_blocks(a, b, chunk);
*a %= MOD;
*b %= MOD;
}
#[inline]
unsafe fn update_block(a: &mut u32, b: &mut u32, chunk: &[u8]) {
debug_assert!(
chunk.len() <= CHUNK_SIZE,
"Unexpected chunk size (expected <= {}, got {})",
CHUNK_SIZE,
chunk.len()
);
for byte in reduce_add_blocks(a, b, chunk) {
*a += *byte as u32;
*b += *a;
}
*a %= MOD;
*b %= MOD;
}
#[inline(always)]
unsafe fn reduce_add_blocks<'a>(a: &mut u32, b: &mut u32, chunk: &'a [u8]) -> &'a [u8] {
if chunk.len() < BLOCK_SIZE {
return chunk;
}
let blocks = chunk.chunks_exact(BLOCK_SIZE);
let blocks_remainder = blocks.remainder();
let one_v = _mm256_set1_epi16(1);
let zero_v = _mm256_setzero_si256();
let weights = get_weights();
let mut p_v = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (*a * blocks.len() as u32) as _);
let mut a_v = _mm256_setzero_si256();
let mut b_v = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, *b as _);
for block in blocks {
let block_ptr = block.as_ptr() as *const _;
let block = _mm256_loadu_si256(block_ptr);
p_v = _mm256_add_epi32(p_v, a_v);
a_v = _mm256_add_epi32(a_v, _mm256_sad_epu8(block, zero_v));
let mad = _mm256_maddubs_epi16(block, weights);
b_v = _mm256_add_epi32(b_v, _mm256_madd_epi16(mad, one_v));
}
b_v = _mm256_add_epi32(b_v, _mm256_slli_epi32(p_v, 5));
*a += reduce_add(a_v);
*b = reduce_add(b_v);
blocks_remainder
}
#[inline(always)]
unsafe fn reduce_add(v: __m256i) -> u32 {
let sum = _mm_add_epi32(_mm256_castsi256_si128(v), _mm256_extracti128_si256(v, 1));
let hi = _mm_unpackhi_epi64(sum, sum);
let sum = _mm_add_epi32(hi, sum);
let hi = _mm_shuffle_epi32(sum, crate::imp::_MM_SHUFFLE(2, 3, 0, 1));
let sum = _mm_add_epi32(sum, hi);
_mm_cvtsi128_si32(sum) as _
}
#[inline(always)]
unsafe fn get_weights() -> __m256i {
_mm256_set_epi8(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32,
)
}
}
#[cfg(test)]
mod tests {
use rand::Rng;
#[test]
fn zeroes() {
assert_sum_eq(&[]);
assert_sum_eq(&[0]);
assert_sum_eq(&[0, 0]);
assert_sum_eq(&[0; 100]);
assert_sum_eq(&[0; 1024]);
assert_sum_eq(&[0; 1024 * 1024]);
}
#[test]
fn ones() {
assert_sum_eq(&[]);
assert_sum_eq(&[1]);
assert_sum_eq(&[1, 1]);
assert_sum_eq(&[1; 100]);
assert_sum_eq(&[1; 1024]);
assert_sum_eq(&[1; 1024 * 1024]);
}
#[test]
fn random() {
let mut random = [0; 1024 * 1024];
rand::thread_rng().fill(&mut random[..]);
assert_sum_eq(&random[..1]);
assert_sum_eq(&random[..100]);
assert_sum_eq(&random[..1024]);
assert_sum_eq(&random[..1024 * 1024]);
}
/// Example calculation from https://en.wikipedia.org/wiki/Adler-32.
#[test]
fn wiki() {
assert_sum_eq(b"Wikipedia");
}
fn assert_sum_eq(data: &[u8]) {
if let Some(update) = super::get_imp() {
let (a, b) = update(1, 0, data);
let left = u32::from(b) << 16 | u32::from(a);
let right = adler::adler32_slice(data);
assert_eq!(left, right, "len({})", data.len());
}
}
}