//! Contains a [`Transform`] object holding values of an affine transformation matrix.
use std::ops::{Mul, MulAssign};
use read_fonts::ReadError;
use super::instance::ResolvedPaint;
#[cfg(feature = "libm")]
#[allow(unused_imports)]
use core_maths::*;
#[cfg(test)]
use serde::{Deserialize, Serialize};
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(test, derive(Serialize, Deserialize))]
/// A transformation matrix to be applied to the drawing canvas.
///
/// Factors are specified in column-order, meaning that
/// for a vector `(x,y)` the transformed position `x'` of the vector
/// is calculated by
/// `x' = xx * x + xy * y + dx`,
/// and the transformed position y' is calculated by
/// `y' = yx * x + yy * y + dy`.
#[derive(Copy)]
pub struct Transform {
pub xx: f32,
pub yx: f32,
pub xy: f32,
pub yy: f32,
pub dx: f32,
pub dy: f32,
}
impl MulAssign for Transform {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Mul for Transform {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
fn muladdmul(a: f32, b: f32, c: f32, d: f32) -> f32 {
a * b + c * d
}
Self {
xx: muladdmul(self.xx, rhs.xx, self.xy, rhs.yx),
xy: muladdmul(self.xx, rhs.xy, self.xy, rhs.yy),
dx: muladdmul(self.xx, rhs.dx, self.xy, rhs.dy) + self.dx,
yx: muladdmul(self.yx, rhs.xx, self.yy, rhs.yx),
yy: muladdmul(self.yx, rhs.xy, self.yy, rhs.yy),
dy: muladdmul(self.yx, rhs.dx, self.yy, rhs.dy) + self.dy,
}
}
}
impl Default for Transform {
fn default() -> Self {
Transform {
xx: 1.0,
yx: 0.0,
xy: 0.0,
yy: 1.0,
dx: 0.0,
dy: 0.0,
}
}
}
impl TryFrom<&ResolvedPaint<'_>> for Transform {
type Error = ReadError;
fn try_from(paint: &ResolvedPaint<'_>) -> Result<Self, Self::Error> {
match paint {
ResolvedPaint::Rotate {
angle,
around_center,
..
} => {
let sin_v = (angle * 180.0).to_radians().sin();
let cos_v = (angle * 180.0).to_radians().cos();
let mut out_transform = Transform {
xx: cos_v,
xy: -sin_v,
yx: sin_v,
yy: cos_v,
..Default::default()
};
fn scalar_dot_product(a: f32, b: f32, c: f32, d: f32) -> f32 {
a * b + c * d
}
if let Some(center) = around_center {
out_transform.dx = scalar_dot_product(sin_v, center.y, 1.0 - cos_v, center.x);
out_transform.dy = scalar_dot_product(-sin_v, center.x, 1.0 - cos_v, center.y);
}
Ok(out_transform)
}
ResolvedPaint::Scale {
scale_x,
scale_y,
around_center,
paint: _,
} => {
let mut out_transform = Transform {
xx: *scale_x,
yy: *scale_y,
..Transform::default()
};
if let Some(center) = around_center {
out_transform.dx = center.x - scale_x * center.x;
out_transform.dy = center.y - scale_y * center.y;
}
Ok(out_transform)
}
ResolvedPaint::Skew {
x_skew_angle,
y_skew_angle,
around_center,
paint: _,
} => {
let tan_x = (x_skew_angle * 180.0).to_radians().tan();
let tan_y = (y_skew_angle * 180.0).to_radians().tan();
let mut out_transform = Transform {
xy: -tan_x,
yx: tan_y,
..Transform::default()
};
if let Some(center) = around_center {
out_transform.dx = tan_x * center.y;
out_transform.dy = -tan_y * center.x;
}
Ok(out_transform)
}
ResolvedPaint::Transform {
xx,
yx,
xy,
yy,
dx,
dy,
paint: _,
} => Ok(Transform {
xx: *xx,
yx: *yx,
xy: *xy,
yy: *yy,
dx: *dx,
dy: *dy,
}),
ResolvedPaint::Translate { dx, dy, .. } => Ok(Transform {
dx: *dx,
dy: *dy,
..Default::default()
}),
_ => Err(ReadError::MalformedData(
"ResolvedPaint cannot be converted into a transform.",
)),
}
}
}