// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/ash/power/auto_screen_brightness/gaussian_trainer.h"
#include "ash/constants/ash_features.h"
#include "base/strings/string_number_conversions.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/scoped_feature_list.h"
#include "base/test/simple_test_tick_clock.h"
#include "chrome/browser/ash/power/auto_screen_brightness/monotone_cubic_spline.h"
#include "chrome/browser/ash/power/auto_screen_brightness/utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace ash {
namespace power {
namespace auto_screen_brightness {
class GaussianTrainerTest : public testing::Test {
public:
GaussianTrainerTest()
: global_curve_(*MonotoneCubicSpline::CreateMonotoneCubicSpline(
log_lux_,
global_brightness_)),
personal_curve_(*MonotoneCubicSpline::CreateMonotoneCubicSpline(
log_lux_,
personal_brightness_)) {}
void ResetModelWithParams(const std::map<std::string, std::string>& params) {
base::test::ScopedFeatureList scoped_feature_list;
scoped_feature_list.InitAndEnableFeatureWithParameters(
features::kAutoScreenBrightness, params);
gaussian_trainer_ = std::make_unique<GaussianTrainer>();
}
GaussianTrainerTest(const GaussianTrainerTest&) = delete;
GaussianTrainerTest& operator=(const GaussianTrainerTest&) = delete;
~GaussianTrainerTest() override = default;
protected:
const std::vector<double> log_lux_ = {-4, -2, 0, 2, 4, 6, 8,
10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30, 32, 34, 36};
const std::vector<double> global_brightness_ = {1, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85, 90, 95, 100};
const std::vector<double> personal_brightness_ = {
3, 8, 12, 17, 22, 27, 32, 37, 42, 46, 51,
56, 61, 66, 71, 76, 81, 86, 91, 95, 100};
// These values are set to not constrain anything (e.g. outliers). Individual
// param will be overridden in unit tests.
const std::map<std::string, std::string> default_params_{
{"brightness_bound_scale", "100"},
{"brightness_bound_offset", "100"},
{"brightness_step_size", "100"},
{"model_brightness_step_size", "100"},
{"sigma", "0.1"},
{"low_log_lux_threshold", "0"},
{"min_grad_low_lux", "0"},
{"high_log_lux_threshold", "40"},
{"min_grad_high_lux", "0"},
{"min_grad", "0"},
{"max_grad", "1"},
{"min_brightness", "0"},
};
// Tests below generally test changes to the |ref_index_|'th entry in the
// brightness curve.
const size_t ref_index_ = 10;
const double ref_log_lux_ = log_lux_[ref_index_];
const double ref_global_brightness_ = global_brightness_[ref_index_];
const double ref_personal_brightness_ = personal_brightness_[ref_index_];
MonotoneCubicSpline global_curve_;
MonotoneCubicSpline personal_curve_;
base::SimpleTestTickClock tick_clock_;
base::HistogramTester histogram_tester_;
std::unique_ptr<GaussianTrainer> gaussian_trainer_;
};
// Tests the effect of |brightness_bound_scale| on outlier checks. A larger
// value would result in a data point less likely to be considered an outlier.
TEST_F(GaussianTrainerTest, OutlierBoundScale) {
std::map<std::string, std::string> params = default_params_;
const double bound_scale = 1.5;
params["brightness_bound_scale"] = base::NumberToString(bound_scale);
params["brightness_bound_offset"] = "0";
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const double min_bound = ref_global_brightness_ / bound_scale;
const double max_bound = ref_global_brightness_ * bound_scale;
const TrainingDataPoint data_too_low = {min_bound - 5, min_bound - 10,
ref_log_lux_, tick_clock_.NowTicks()};
const TrainingDataPoint data_too_high = {
max_bound + 5, max_bound + 10, ref_log_lux_, tick_clock_.NowTicks()};
// |data_too_low| and |data_too_high| are both ignored. Hence there is no
// change in the personal curve.
const TrainingResult result1 =
gaussian_trainer_->Train({data_too_low, data_too_high});
EXPECT_FALSE(result1.new_curve);
// Next increase |brightness_bound_scale|, so that the two training data
// points are no longer outliers. A new curve will be trained.
params["brightness_bound_scale"] = base::NumberToString(bound_scale * 100);
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const TrainingResult result2 =
gaussian_trainer_->Train({data_too_low, data_too_high});
EXPECT_TRUE(result2.new_curve);
const MonotoneCubicSpline trained_curve2 = *result2.new_curve;
EXPECT_FALSE(trained_curve2 == personal_curve_);
const std::vector<double> new_log_lux2 = trained_curve2.GetControlPointsX();
for (size_t i = 0; i < personal_brightness_.size(); ++i) {
EXPECT_DOUBLE_EQ(new_log_lux2[i], log_lux_[i]);
}
}
// Tests the effect of |brightness_bound_offset| on outlier checks. A larger
// value would result in a data point less likely to be considered an outlier.
TEST_F(GaussianTrainerTest, OutlierBoundOffset) {
std::map<std::string, std::string> params = default_params_;
const double bound_offset = 40;
params["brightness_bound_scale"] = "1";
params["brightness_bound_offset"] = base::NumberToString(bound_offset);
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const double min_bound = ref_global_brightness_ - bound_offset;
const double max_bound = ref_global_brightness_ + bound_offset;
const TrainingDataPoint data_too_low = {min_bound - 5, min_bound - 10,
ref_log_lux_, tick_clock_.NowTicks()};
const TrainingDataPoint data_too_high = {
max_bound + 5, max_bound + 10, ref_log_lux_, tick_clock_.NowTicks()};
// |data_too_low| and |data_too_high| are both ignored. Hence there is no
// change in the personal curve.
const TrainingResult result1 =
gaussian_trainer_->Train({data_too_low, data_too_high});
EXPECT_FALSE(result1.new_curve);
// Next increase |brightness_bound_offset|, so that the two training data
// points are no longer outliers. A new curve will be trained.
params["brightness_bound_offset"] = base::NumberToString(bound_offset + 20);
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const TrainingResult result2 =
gaussian_trainer_->Train({data_too_low, data_too_high});
EXPECT_TRUE(result2.new_curve);
const MonotoneCubicSpline trained_curve2 = *result2.new_curve;
EXPECT_FALSE(trained_curve2 == personal_curve_);
const std::vector<double> new_log_lux2 = trained_curve2.GetControlPointsX();
for (size_t i = 0; i < personal_brightness_.size(); ++i) {
EXPECT_DOUBLE_EQ(new_log_lux2[i], log_lux_[i]);
}
}
// Tests the effect of |brightness_step_size| on the training data point and
// hence the trained curve. A smaller value would lead to a narrower brightness
// change that is considered plausible. Hence changes on brightness curve will
// be smaller too.
TEST_F(GaussianTrainerTest, BrightnessStepSize) {
// Brightness change occurs at a control point (|ref_log_lux_|).
const TrainingDataPoint data = {ref_personal_brightness_ + 1,
ref_personal_brightness_ + 20, ref_log_lux_,
tick_clock_.NowTicks()};
// First train the curve with |brightness_step_size| = 100.
std::map<std::string, std::string> params = default_params_;
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const MonotoneCubicSpline trained_curve1 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux1 = trained_curve1.GetControlPointsX();
const std::vector<double> new_brightness1 =
trained_curve1.GetControlPointsY();
// Next train the curve with a smaller |brightness_step_size|. Hence increase
// in brightness adjustment is effectively capped.
params["brightness_step_size"] = "0.2";
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const MonotoneCubicSpline trained_curve2 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux2 = trained_curve2.GetControlPointsX();
const std::vector<double> new_brightness2 =
trained_curve2.GetControlPointsY();
EXPECT_EQ(new_log_lux1.size(), log_lux_.size());
EXPECT_EQ(new_log_lux2.size(), log_lux_.size());
for (size_t i = 0; i < personal_brightness_.size(); ++i) {
EXPECT_DOUBLE_EQ(new_log_lux1[i], log_lux_[i]);
EXPECT_DOUBLE_EQ(new_log_lux2[i], log_lux_[i]);
if (i == ref_index_) {
// At |ref_index_| brightness of |trained_curve1| should be strictly
// bigger because it has a larger step size.
EXPECT_GT(new_brightness1[i], new_brightness2[i]);
EXPECT_GT(new_brightness2[i], personal_brightness_[i]);
} else {
// At other points, |trained_curve1| should be not smaller than
// |trained_curve2|. The actual difference depends on |sigma|.
EXPECT_GE(new_brightness1[i], new_brightness2[i]);
EXPECT_GE(new_brightness2[i], personal_brightness_[i]);
}
}
}
// Same as BrightnessStepSize test, except this test checks the effect of
// |model_brightness_step_size| on the training data point
// and hence the trained curve. A smaller value would lead to a narrower
// brightness change that is considered plausible. Hence changes on brightness
// curve will be smaller too.
TEST_F(GaussianTrainerTest, ModelBrightnessStepSize) {
// Brightness change occurs at a control point (|ref_log_lux_|).
const TrainingDataPoint data = {ref_personal_brightness_ + 1,
ref_personal_brightness_ + 20, ref_log_lux_,
tick_clock_.NowTicks()};
// First train the curve with |model_brightness_step_size| = 100. A value of
// 100 means the difference between model brightness and target brightness is
// essentially unbounded.
std::map<std::string, std::string> params = default_params_;
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const MonotoneCubicSpline trained_curve1 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux1 = trained_curve1.GetControlPointsX();
const std::vector<double> new_brightness1 =
trained_curve1.GetControlPointsY();
// Next train the curve with a smaller |model_brightness_step_size|. Hence
// increase in brightness adjustment is effectively capped.
params["model_brightness_step_size"] = "0.2";
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const MonotoneCubicSpline trained_curve2 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux2 = trained_curve2.GetControlPointsX();
const std::vector<double> new_brightness2 =
trained_curve2.GetControlPointsY();
EXPECT_EQ(new_log_lux1.size(), log_lux_.size());
EXPECT_EQ(new_log_lux2.size(), log_lux_.size());
for (size_t i = 0; i < personal_brightness_.size(); ++i) {
EXPECT_DOUBLE_EQ(new_log_lux1[i], log_lux_[i]);
EXPECT_DOUBLE_EQ(new_log_lux2[i], log_lux_[i]);
if (i == ref_index_) {
// At |ref_index_| brightness of |trained_curve1| should be strictly
// bigger because it has a larger step size.
EXPECT_GT(new_brightness1[i], new_brightness2[i]);
EXPECT_GT(new_brightness2[i], personal_brightness_[i]);
} else {
// At other points, |trained_curve1| should be not smaller than
// |trained_curve2|. The actual difference depends on |sigma|.
EXPECT_GE(new_brightness1[i], new_brightness2[i]);
EXPECT_GE(new_brightness2[i], personal_brightness_[i]);
}
}
}
// Tests the effect of |sigma| on the globalness/localness of a single data
// point on the entire curve. A larger value would result in more control points
// being updated (in addition to the one nearest to the training data).
TEST_F(GaussianTrainerTest, Sigma) {
// Brightness change occurs at a control point (|ref_log_lux_|).
const TrainingDataPoint data = {ref_personal_brightness_ + 1,
ref_personal_brightness_ + 5, ref_log_lux_,
tick_clock_.NowTicks()};
// First train the curve with |sigma| = 0.1.
std::map<std::string, std::string> params = default_params_;
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const MonotoneCubicSpline trained_curve1 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux1 = trained_curve1.GetControlPointsX();
const std::vector<double> new_brightness1 =
trained_curve1.GetControlPointsY();
// Next train the curve with a larger |sigma|. Hence more control points have
// larger brightness.
params["sigma"] = "10";
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const MonotoneCubicSpline trained_curve2 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux2 = trained_curve2.GetControlPointsX();
const std::vector<double> new_brightness2 =
trained_curve2.GetControlPointsY();
EXPECT_EQ(new_log_lux1.size(), log_lux_.size());
EXPECT_EQ(new_log_lux2.size(), log_lux_.size());
// Total brightness difference between |trained_curve2| and |trained_curve1|.
double brightness_diff_21 = 0;
for (size_t i = 0; i < personal_brightness_.size(); ++i) {
EXPECT_DOUBLE_EQ(new_log_lux1[i], log_lux_[i]);
EXPECT_DOUBLE_EQ(new_log_lux2[i], log_lux_[i]);
if (i == ref_index_) {
EXPECT_DOUBLE_EQ(new_brightness1[i], new_brightness2[i]);
EXPECT_GT(new_brightness1[i], personal_brightness_[i]);
} else {
EXPECT_GE(new_brightness2[i], new_brightness1[i]);
EXPECT_GE(new_brightness1[i], personal_brightness_[i]);
}
brightness_diff_21 += new_brightness2[i] - new_brightness1[i];
}
EXPECT_GT(brightness_diff_21, 0);
}
// Tests the effect of |min_grad| on the trained curve. A bigger value would
// lead to a steeper curve.
TEST_F(GaussianTrainerTest, MinGrad) {
// Brightness change occurs at a control point (|ref_log_lux_|).
const TrainingDataPoint data = {ref_personal_brightness_ + 1,
ref_personal_brightness_ + 20, ref_log_lux_,
tick_clock_.NowTicks()};
// First train the curve with |min_grad| = 0.
std::map<std::string, std::string> params = default_params_;
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const MonotoneCubicSpline trained_curve1 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux1 = trained_curve1.GetControlPointsX();
const std::vector<double> new_brightness1 =
trained_curve1.GetControlPointsY();
// Next train the curve with a bigger |min_grad|. Hence the curve will be
// steeper.
params["min_grad"] = "0.2";
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const MonotoneCubicSpline trained_curve2 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux2 = trained_curve2.GetControlPointsX();
const std::vector<double> new_brightness2 =
trained_curve2.GetControlPointsY();
EXPECT_EQ(new_log_lux1.size(), log_lux_.size());
EXPECT_EQ(new_log_lux2.size(), log_lux_.size());
// It's not guaranteed that each point on |trained_curve2| would have a
// bigger slope than the corresponding point on |trained_curve1|. Hence we
// check min slope of |trained_curve2| is larger than the min slope of
// |trained_curve1|.
double min_ratio1 = std::numeric_limits<double>::max();
double min_ratio2 = std::numeric_limits<double>::max();
for (size_t i = 0; i < personal_brightness_.size(); ++i) {
EXPECT_DOUBLE_EQ(new_log_lux1[i], log_lux_[i]);
EXPECT_DOUBLE_EQ(new_log_lux2[i], log_lux_[i]);
if (i < personal_brightness_.size() - 1) {
const double ratio1 = new_brightness1[i + 1] / new_brightness1[i];
const double ratio2 = new_brightness2[i + 1] / new_brightness2[i];
min_ratio1 = std::min(min_ratio1, ratio1);
min_ratio2 = std::min(min_ratio2, ratio2);
}
}
EXPECT_LT(min_ratio1, min_ratio2);
}
// Tests the effect of lower |high_log_lux_threshold|. This makes the curve
// flatter.
TEST_F(GaussianTrainerTest, HighLuxThreshold) {
// Brightness change occurs at a control point (|ref_log_lux_|).
const TrainingDataPoint data = {ref_personal_brightness_ + 1,
ref_personal_brightness_ + 20, ref_log_lux_,
tick_clock_.NowTicks()};
std::map<std::string, std::string> params = default_params_;
params["min_grad"] = "0.3";
// First train the curve with |min_grad_high_lux| = 0 and very high
// |high_log_lux_threshold| hence it has no effect.
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, global_curve_));
const MonotoneCubicSpline trained_curve1 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux1 = trained_curve1.GetControlPointsX();
const std::vector<double> new_brightness1 =
trained_curve1.GetControlPointsY();
// Next reduce |high_log_lux_threshold|. This makes the curve flatter.
params["high_log_lux_threshold"] = "20";
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, global_curve_));
const MonotoneCubicSpline trained_curve2 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux2 = trained_curve2.GetControlPointsX();
const std::vector<double> new_brightness2 =
trained_curve2.GetControlPointsY();
EXPECT_EQ(new_log_lux1.size(), log_lux_.size());
EXPECT_EQ(new_log_lux2.size(), log_lux_.size());
// It's not guaranteed that each point on |trained_curve2| would have a
// smaller slope than the corresponding point on |trained_curve1|. Hence we
// check min slope of |trained_curve2| is smaller than the min slope of
// |trained_curve1|.
double min_ratio1 = std::numeric_limits<double>::max();
double min_ratio2 = std::numeric_limits<double>::max();
for (size_t i = 0; i < personal_brightness_.size(); ++i) {
EXPECT_DOUBLE_EQ(new_log_lux1[i], log_lux_[i]);
EXPECT_DOUBLE_EQ(new_log_lux2[i], log_lux_[i]);
if (i < personal_brightness_.size() - 1) {
const double ratio1 = new_brightness1[i + 1] / new_brightness1[i];
const double ratio2 = new_brightness2[i + 1] / new_brightness2[i];
min_ratio1 = std::min(min_ratio1, ratio1);
min_ratio2 = std::min(min_ratio2, ratio2);
}
}
EXPECT_GT(min_ratio1, min_ratio2);
}
// Tests the effect of bigger |min_grad_high_lux|. This makes the curve steeper.
TEST_F(GaussianTrainerTest, MinGradHighLux) {
// Brightness change occurs at a control point (|ref_log_lux_|).
const TrainingDataPoint data = {ref_personal_brightness_ + 1,
ref_personal_brightness_ + 20, ref_log_lux_,
tick_clock_.NowTicks()};
std::map<std::string, std::string> params = default_params_;
params["min_grad"] = "0.3";
params["high_log_lux_threshold"] = "20";
// First train the curve with |min_grad_high_lux| = 0.
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, global_curve_));
const MonotoneCubicSpline trained_curve1 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux1 = trained_curve1.GetControlPointsX();
const std::vector<double> new_brightness1 =
trained_curve1.GetControlPointsY();
// Next increase |min_grad_high_lux|. This makes the curve steeper.
params["min_grad_high_lux"] = "0.2";
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, global_curve_));
const MonotoneCubicSpline trained_curve2 =
*(gaussian_trainer_->Train({data}).new_curve);
const std::vector<double> new_log_lux2 = trained_curve2.GetControlPointsX();
const std::vector<double> new_brightness2 =
trained_curve2.GetControlPointsY();
EXPECT_EQ(new_log_lux1.size(), log_lux_.size());
EXPECT_EQ(new_log_lux2.size(), log_lux_.size());
// It's not guaranteed that each point on |trained_curve2| would have a
// bigger slope than the corresponding point on |trained_curve1|. Hence we
// check min slope of |trained_curve2| is bigger than the min slope of
// |trained_curve1|.
double min_ratio1 = std::numeric_limits<double>::max();
double min_ratio2 = std::numeric_limits<double>::max();
for (size_t i = 0; i < personal_brightness_.size(); ++i) {
EXPECT_DOUBLE_EQ(new_log_lux1[i], log_lux_[i]);
EXPECT_DOUBLE_EQ(new_log_lux2[i], log_lux_[i]);
if (i < personal_brightness_.size() - 1) {
const double ratio1 = new_brightness1[i + 1] / new_brightness1[i];
const double ratio2 = new_brightness2[i + 1] / new_brightness2[i];
min_ratio1 = std::min(min_ratio1, ratio1);
min_ratio2 = std::min(min_ratio2, ratio2);
}
}
EXPECT_LT(min_ratio1, min_ratio2);
}
// The current curve isn't updated because training data point is consistent
// with existing model prediction.
TEST_F(GaussianTrainerTest, ConsistentModelPredictionNoCurveUpdate) {
ResetModelWithParams(default_params_);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
// User increased brightness and target is lower than model prediction. Hence
// no change to the curve.
EXPECT_FALSE(gaussian_trainer_
->Train({{ref_personal_brightness_ - 20,
ref_personal_brightness_ - 10, ref_log_lux_,
tick_clock_.NowTicks()}})
.new_curve);
ResetModelWithParams(default_params_);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
// User decreased brightness and target is higher than model prediction. Hence
// no change to the curve.
EXPECT_FALSE(gaussian_trainer_
->Train({{ref_personal_brightness_ + 20,
ref_personal_brightness_ + 10, ref_log_lux_,
tick_clock_.NowTicks()}})
.new_curve);
}
// Tests numerical results of a trained curve so that we could detect any
// unexpected changes when algorithm changes.
TEST_F(GaussianTrainerTest, TrainedCurveValue) {
// Brightness change occurs at a control point (|ref_log_lux_|).
const TrainingDataPoint data = {ref_personal_brightness_ + 1,
ref_personal_brightness_ + 20, ref_log_lux_,
tick_clock_.NowTicks()};
const std::map<std::string, std::string> params{
{"brightness_bound_scale", "1.5"},
{"brightness_bound_offset", "40"},
{"brightness_step_size", "0.2"},
{"sigma", "1"},
{"low_log_lux_threshold", "0"},
{"min_grad_low_lux", "0"},
{"high_log_lux_threshold", "40"},
{"min_grad_high_lux", "0"},
{"min_grad", "0"},
{"max_grad", "1"},
{"min_brightness", "0"}};
ResetModelWithParams(params);
EXPECT_TRUE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
const MonotoneCubicSpline trained_curve =
*(gaussian_trainer_->Train({data}).new_curve);
const std::optional<MonotoneCubicSpline> expected_curve =
MonotoneCubicSpline::CreateMonotoneCubicSpline(
log_lux_, {3.0, 8.0, 12.48, 18.72, 24.96, 31.2, 37.44,
43.68, 49.92, 56.16, 62.4, 62.4, 62.4, 66.0,
71.0, 76.0, 81.0, 86.0, 91.0, 95, 100.0});
DCHECK(expected_curve);
EXPECT_EQ(trained_curve, *expected_curve);
}
// Initial personal curve doesn't satisfy slope constraints.
TEST_F(GaussianTrainerTest, PersonalCurveFailingSlopeConstraints) {
std::map<std::string, std::string> params = default_params_;
params["min_grad"] = "0.9";
ResetModelWithParams(params);
EXPECT_FALSE(
gaussian_trainer_->SetInitialCurves(global_curve_, personal_curve_));
}
// Valid parameters.
TEST_F(GaussianTrainerTest, ValidParameters) {
std::map<std::string, std::string> params = default_params_;
params["min_grad"] = "0.8";
ResetModelWithParams(params);
EXPECT_TRUE(gaussian_trainer_->HasValidConfiguration());
histogram_tester_.ExpectTotalCount("AutoScreenBrightness.ParameterError", 0);
}
// Invalid parameters.
TEST_F(GaussianTrainerTest, InvalidParameters) {
std::map<std::string, std::string> params = default_params_;
params["min_grad"] = "1.2";
ResetModelWithParams(params);
EXPECT_FALSE(gaussian_trainer_->HasValidConfiguration());
histogram_tester_.ExpectUniqueSample(
"AutoScreenBrightness.ParameterError",
static_cast<int>(ParameterError::kModelError), 1);
}
} // namespace auto_screen_brightness
} // namespace power
} // namespace ash