// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/ash/power/cpu_data_collector.h"
#include <stddef.h>
#include <string_view>
#include <vector>
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/system/sys_info.h"
#include "base/task/thread_pool.h"
#include "chrome/browser/ash/power/power_data_collector.h"
#include "content/public/browser/browser_thread.h"
namespace ash {
namespace {
// The sampling of CPU idle or CPU freq data should not take more than this
// limit.
constexpr int kSamplingDurationLimitMs = 500;
// The CPU data is sampled every |kCpuDataSamplePeriodSec| seconds.
constexpr int kCpuDataSamplePeriodSec = 30;
// The value in the file /sys/devices/system/cpu/cpu<n>/online which indicates
// that CPU-n is online.
constexpr int kCpuOnlineStatus = 1;
// The base of the path to the files and directories which contain CPU data in
// the sysfs.
constexpr char kCpuDataPathBase[] = "/sys/devices/system/cpu";
// Suffix of the path to the file listing the range of possible CPUs on the
// system.
constexpr char kPossibleCpuPathSuffix[] = "/possible";
// Format of the suffix of the path to the file which contains information
// about a particular CPU being online or offline.
constexpr char kCpuOnlinePathSuffixFormat[] = "/cpu%d/online";
// Format of the suffix of the path to the file which contains freq state
// information of a CPU.
constexpr char kCpuFreqTimeInStatePathSuffixFormat[] =
"/cpu%d/cpufreq/stats/time_in_state";
// Format of the suffix of the path to the folder which contains time in state
// file. If the folder does not exist, current platform does not produce
// discrete CPU frequency data.
constexpr char kCpuFreqStatsPathSuffixFormat[] = "/cpu%d/cpufreq/stats";
// The path to the file which contains cpu freq state information of a CPU
// in 3.14.0 or newer kernels.
constexpr char kCpuFreqAllTimeInStatePath[] =
"/sys/devices/system/cpu/cpufreq/all_time_in_state";
// Format of the suffix of the path to the directory which contains information
// about an idle state of a CPU on the system.
constexpr char kCpuIdleStateDirPathSuffixFormat[] = "/cpu%d/cpuidle/state%d";
// Format of the suffix of the path to the file which contains the name of an
// idle state of a CPU.
constexpr char kCpuIdleStateNamePathSuffixFormat[] =
"/cpu%d/cpuidle/state%d/name";
// Format of the suffix of the path which contains information about time spent
// in an idle state on a CPU.
constexpr char kCpuIdleStateTimePathSuffixFormat[] =
"/cpu%d/cpuidle/state%d/time";
// Returns the index at which |str| is in |vector|. If |str| is not present in
// |vector|, then it is added to it before its index is returned.
size_t EnsureInVector(const std::string& str,
std::vector<std::string>* vector) {
for (size_t i = 0; i < vector->size(); ++i) {
if (str == (*vector)[i])
return i;
}
// If this is reached, then it means |str| is not present in vector. Add it.
vector->push_back(str);
return vector->size() - 1;
}
// Returns true if the |i|-th CPU is online; false otherwise.
bool CpuIsOnline(const int i) {
const std::string cpu_online_file =
kCpuDataPathBase + base::StringPrintf(kCpuOnlinePathSuffixFormat, i);
if (!base::PathExists(base::FilePath(cpu_online_file))) {
// If the 'online' status file is missing, then it means that the CPU is
// not hot-pluggable and hence is always online.
return true;
}
int online;
std::string cpu_online_string;
if (base::ReadFileToString(base::FilePath(cpu_online_file),
&cpu_online_string)) {
base::TrimWhitespaceASCII(cpu_online_string, base::TRIM_ALL,
&cpu_online_string);
if (base::StringToInt(cpu_online_string, &online))
return online == kCpuOnlineStatus;
}
LOG(ERROR) << "Bad format or error reading " << cpu_online_file << ". "
<< "Assuming offline.";
return false;
}
// Samples the CPU idle state information from sysfs. |cpu_count| is the
// number of possible CPUs on the system. Sample at index i in |idle_samples|
// corresponds to the idle state information of the i-th CPU.
void SampleCpuIdleData(
int cpu_count,
std::vector<std::string>* cpu_idle_state_names,
std::vector<CpuDataCollector::StateOccupancySample>* idle_samples) {
base::Time start_time = base::Time::Now();
for (int cpu = 0; cpu < cpu_count; ++cpu) {
CpuDataCollector::StateOccupancySample idle_sample;
idle_sample.time = base::Time::Now();
idle_sample.time_in_state.reserve(cpu_idle_state_names->size());
if (!CpuIsOnline(cpu)) {
idle_sample.cpu_online = false;
} else {
idle_sample.cpu_online = true;
for (int state_count = 0; ; ++state_count) {
std::string idle_state_dir =
kCpuDataPathBase +
base::StringPrintf(kCpuIdleStateDirPathSuffixFormat, cpu,
state_count);
// This insures us from the unlikely case wherein the 'cpuidle_stats'
// kernel module is not loaded. This could happen on a VM.
if (!base::DirectoryExists(base::FilePath(idle_state_dir)))
break;
const std::string name_file_path =
kCpuDataPathBase +
base::StringPrintf(kCpuIdleStateNamePathSuffixFormat, cpu,
state_count);
DCHECK(base::PathExists(base::FilePath(name_file_path)));
const std::string time_file_path =
kCpuDataPathBase +
base::StringPrintf(kCpuIdleStateTimePathSuffixFormat, cpu,
state_count);
DCHECK(base::PathExists(base::FilePath(time_file_path)));
std::string state_name, occupancy_time_string;
int64_t occupancy_time_usec;
if (!base::ReadFileToString(base::FilePath(name_file_path),
&state_name) ||
!base::ReadFileToString(base::FilePath(time_file_path),
&occupancy_time_string)) {
// If an error occurs reading/parsing single state data, drop all the
// samples as an incomplete sample can mislead consumers of this
// sample.
LOG(ERROR) << "Error reading idle state from "
<< idle_state_dir << ". Dropping sample.";
idle_samples->clear();
return;
}
base::TrimWhitespaceASCII(state_name, base::TRIM_ALL, &state_name);
base::TrimWhitespaceASCII(occupancy_time_string, base::TRIM_ALL,
&occupancy_time_string);
if (base::StringToInt64(occupancy_time_string, &occupancy_time_usec)) {
size_t index = EnsureInVector(state_name, cpu_idle_state_names);
if (index >= idle_sample.time_in_state.size())
idle_sample.time_in_state.resize(index + 1);
idle_sample.time_in_state[index] =
base::Microseconds(occupancy_time_usec);
} else {
LOG(ERROR) << "Bad format in " << time_file_path << ". "
<< "Dropping sample.";
idle_samples->clear();
return;
}
}
}
idle_samples->push_back(idle_sample);
}
// If there was an interruption in sampling (like system suspended),
// discard the samples!
int64_t delay =
base::TimeDelta(base::Time::Now() - start_time).InMilliseconds();
if (delay > kSamplingDurationLimitMs) {
idle_samples->clear();
LOG(WARNING) << "Dropped an idle state sample due to excessive time delay: "
<< delay << "milliseconds.";
}
}
// Samples the CPU freq state information from sysfs. |cpu_count| is the
// number of possible CPUs on the system. Sample at index i in |freq_samples|
// corresponds to the freq state information of the i-th CPU.
void SampleCpuFreqData(
int cpu_count,
std::vector<std::string>* cpu_freq_state_names,
std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
base::Time start_time = base::Time::Now();
int online_cpu_count = 0;
for (int cpu = 0; cpu < cpu_count; ++cpu) {
CpuDataCollector::StateOccupancySample freq_sample;
freq_sample.time_in_state.reserve(cpu_freq_state_names->size());
freq_sample.time = base::Time::Now();
freq_sample.cpu_online = CpuIsOnline(cpu);
online_cpu_count += (freq_sample.cpu_online ? 1 : 0);
freq_samples->push_back(freq_sample);
}
if (base::PathExists(base::FilePath(kCpuFreqAllTimeInStatePath))) {
if (!CpuDataCollector::ReadCpuFreqAllTimeInState(
online_cpu_count, base::FilePath(kCpuFreqAllTimeInStatePath),
cpu_freq_state_names, freq_samples)) {
freq_samples->clear();
return;
}
} else {
for (int cpu = 0; cpu < cpu_count; ++cpu) {
if ((*freq_samples)[cpu].cpu_online) {
const base::FilePath time_in_state_path(
kCpuDataPathBase +
base::StringPrintf(kCpuFreqTimeInStatePathSuffixFormat, cpu));
if (base::PathExists(time_in_state_path)) {
if (!CpuDataCollector::ReadCpuFreqTimeInState(
time_in_state_path, cpu_freq_state_names,
&(*freq_samples)[cpu])) {
freq_samples->clear();
return;
}
} else {
freq_samples->clear();
const base::FilePath cpu_freq_stats_path(
kCpuDataPathBase +
base::StringPrintf(kCpuFreqStatsPathSuffixFormat, cpu));
if (!base::PathExists(cpu_freq_stats_path)) {
// If the path to 'stats' folder for a single CPU is missing, then
// current platform does not produce discrete CPU frequency data.
// This could happen when intel_pstate driver is used for cpufreq
// governor. Error message should not printed in this case.
return;
}
// If the path to the 'time_in_state' for a single CPU is missing,
// then 'time_in_state' for all CPUs is missing. This could happen
// on a VM where the 'cpufreq_stats' kernel module is not loaded.
LOG_IF(ERROR, base::SysInfo::IsRunningOnChromeOS())
<< "CPU freq stats not available in sysfs.";
return;
}
}
}
}
// If there was an interruption in sampling (like system suspended),
// discard the samples!
int64_t delay =
base::TimeDelta(base::Time::Now() - start_time).InMilliseconds();
if (delay > kSamplingDurationLimitMs) {
freq_samples->clear();
LOG(WARNING) << "Dropped a freq state sample due to excessive time delay: "
<< delay << "milliseconds.";
}
}
// Samples CPU idle and CPU freq data from sysfs. This function should run on
// the blocking pool as reading from sysfs is a blocking task. Elements at
// index i in |idle_samples| and |freq_samples| correspond to the idle and
// freq samples of CPU i. This also function reads the number of CPUs from
// sysfs if *|cpu_count| < 0.
void SampleCpuStateAsync(
int* cpu_count,
std::vector<std::string>* cpu_idle_state_names,
std::vector<CpuDataCollector::StateOccupancySample>* idle_samples,
std::vector<std::string>* cpu_freq_state_names,
std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
DCHECK(!content::BrowserThread::CurrentlyOn(content::BrowserThread::UI));
if (*cpu_count < 0) {
// Set |cpu_count_| to 1. If it is something else, it will get corrected
// later. A system will at least have one CPU. Hence, a value of 1 here
// will serve as a default value in case of errors.
*cpu_count = 1;
const std::string possible_cpu_path = base::StringPrintf(
"%s%s", kCpuDataPathBase, kPossibleCpuPathSuffix);
if (!base::PathExists(base::FilePath(possible_cpu_path))) {
LOG(ERROR) << "File listing possible CPUs missing. "
<< "Defaulting CPU count to 1.";
} else {
std::string possible_string;
if (base::ReadFileToString(base::FilePath(possible_cpu_path),
&possible_string)) {
int max_cpu;
// The possible CPUs are listed in the format "0-N". Hence, N is present
// in the substring starting at offset 2.
base::TrimWhitespaceASCII(possible_string, base::TRIM_ALL,
&possible_string);
if (possible_string.find("-") != std::string::npos &&
possible_string.length() > 2 &&
base::StringToInt(possible_string.substr(2), &max_cpu)) {
*cpu_count = max_cpu + 1;
} else {
LOG(ERROR) << "Unknown format in the file listing possible CPUs. "
<< "Defaulting CPU count to 1.";
}
} else {
LOG(ERROR) << "Error reading the file listing possible CPUs. "
<< "Defaulting CPU count to 1.";
}
}
}
// Initialize the deques in the data vectors.
SampleCpuIdleData(*cpu_count, cpu_idle_state_names, idle_samples);
SampleCpuFreqData(*cpu_count, cpu_freq_state_names, freq_samples);
}
} // namespace
bool CpuDataCollector::ReadCpuFreqTimeInState(
const base::FilePath& path,
std::vector<std::string>* cpu_freq_state_names,
CpuDataCollector::StateOccupancySample* freq_sample) {
std::string time_in_state_string;
// Note time as close to reading the file as possible. This is
// not possible for idle state samples as the information for
// each state there is recorded in different files.
if (!base::ReadFileToString(path, &time_in_state_string)) {
LOG(ERROR) << "Error reading " << path.value() << "; Dropping sample.";
return false;
}
// Remove trailing newlines.
base::TrimWhitespaceASCII(time_in_state_string,
base::TrimPositions::TRIM_TRAILING,
&time_in_state_string);
std::vector<std::string_view> lines = base::SplitStringPiece(
time_in_state_string, "\n", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
for (size_t line_num = 0; line_num < lines.size(); ++line_num) {
int freq_in_khz;
int64_t occupancy_time_centisecond;
// Occupancy of each state is in the format "<state> <time>"
std::vector<std::string_view> pair = base::SplitStringPiece(
lines[line_num], " ", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
if (pair.size() != 2 || !base::StringToInt(pair[0], &freq_in_khz) ||
!base::StringToInt64(pair[1], &occupancy_time_centisecond)) {
LOG(ERROR) << "Bad format at \"" << lines[line_num] << "\" in "
<< path.value() << ". Dropping sample.";
return false;
}
const std::string state_name = base::NumberToString(freq_in_khz / 1000);
size_t index = EnsureInVector(state_name, cpu_freq_state_names);
if (index >= freq_sample->time_in_state.size())
freq_sample->time_in_state.resize(index + 1);
freq_sample->time_in_state[index] =
base::Milliseconds(occupancy_time_centisecond * 10);
}
return true;
}
bool CpuDataCollector::ReadCpuFreqAllTimeInState(
int online_cpu_count,
const base::FilePath& path,
std::vector<std::string>* cpu_freq_state_names,
std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
std::string all_time_in_state_string;
// Note time as close to reading the file as possible. This is
// not possible for idle state samples as the information for
// each state there is recorded in different files.
if (!base::ReadFileToString(path, &all_time_in_state_string)) {
LOG(ERROR) << "Error reading " << path.value() << "; Dropping sample.";
return false;
}
// Remove trailing newlines.
base::TrimWhitespaceASCII(all_time_in_state_string,
base::TrimPositions::TRIM_TRAILING,
&all_time_in_state_string);
std::vector<std::string_view> lines =
base::SplitStringPiece(all_time_in_state_string, "\n",
base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
// The first line is descriptions in the format "freq\t\tcpu0\t\tcpu1...".
// Skip the first line, which contains column names.
for (size_t line_num = 1; line_num < lines.size(); ++line_num) {
// Occupancy of each state is in the format "<state>\t\t<time>\t\t<time>
// ..."
std::vector<std::string_view> array =
base::SplitStringPiece(lines[line_num], "\t", base::TRIM_WHITESPACE,
base::SPLIT_WANT_NONEMPTY);
int freq_in_khz;
if (array.size() != static_cast<size_t>(online_cpu_count) + 1 ||
!base::StringToInt(array[0], &freq_in_khz)) {
LOG(ERROR) << "Bad format at \"" << lines[line_num] << "\" in "
<< path.value() << ". Dropping sample.";
return false;
}
const std::string state_name = base::NumberToString(freq_in_khz / 1000);
size_t index = EnsureInVector(state_name, cpu_freq_state_names);
for (int cpu = 0; cpu < online_cpu_count; ++cpu) {
// array.size() is previously checked to be equal to online_cpu_count+1.
// cpu ranges from [0,online_cpu_count), so cpu+1 never exceeds
// online_cpu_count and is safe.
if (array[cpu + 1] == "N/A") {
continue;
}
if (index >= (*freq_samples)[cpu].time_in_state.size())
(*freq_samples)[cpu].time_in_state.resize(index + 1);
int64_t occupancy_time_centisecond;
if (!base::StringToInt64(array[cpu + 1], &occupancy_time_centisecond)) {
LOG(ERROR) << "Bad format at \"" << lines[line_num] << "\" in "
<< path.value() << ". Dropping sample.";
return false;
}
(*freq_samples)[cpu].time_in_state[index] =
base::Milliseconds(occupancy_time_centisecond * 10);
}
}
return true;
}
// Set |cpu_count_| to -1 and let SampleCpuStateAsync discover the
// correct number of CPUs.
CpuDataCollector::CpuDataCollector() : cpu_count_(-1) {}
CpuDataCollector::~CpuDataCollector() {
}
void CpuDataCollector::Start() {
timer_.Start(FROM_HERE, base::Seconds(kCpuDataSamplePeriodSec), this,
&CpuDataCollector::PostSampleCpuState);
}
void CpuDataCollector::PostSampleCpuState() {
int* cpu_count = new int(cpu_count_);
std::vector<std::string>* cpu_idle_state_names =
new std::vector<std::string>(cpu_idle_state_names_);
std::vector<StateOccupancySample>* idle_samples =
new std::vector<StateOccupancySample>;
std::vector<std::string>* cpu_freq_state_names =
new std::vector<std::string>(cpu_freq_state_names_);
std::vector<StateOccupancySample>* freq_samples =
new std::vector<StateOccupancySample>;
base::ThreadPool::PostTaskAndReply(
FROM_HERE, {base::MayBlock(), base::TaskPriority::BEST_EFFORT},
base::BindOnce(&SampleCpuStateAsync, base::Unretained(cpu_count),
base::Unretained(cpu_idle_state_names),
base::Unretained(idle_samples),
base::Unretained(cpu_freq_state_names),
base::Unretained(freq_samples)),
base::BindOnce(
&CpuDataCollector::SaveCpuStateSamplesOnUIThread,
weak_ptr_factory_.GetWeakPtr(), base::Owned(cpu_count),
base::Owned(cpu_idle_state_names), base::Owned(idle_samples),
base::Owned(cpu_freq_state_names), base::Owned(freq_samples)));
}
void CpuDataCollector::SaveCpuStateSamplesOnUIThread(
const int* cpu_count,
const std::vector<std::string>* cpu_idle_state_names,
const std::vector<CpuDataCollector::StateOccupancySample>* idle_samples,
const std::vector<std::string>* cpu_freq_state_names,
const std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
cpu_count_ = *cpu_count;
// |idle_samples| or |freq_samples| could be empty sometimes (for example, if
// sampling was interrupted due to system suspension). Iff they are not empty,
// they will have one sample each for each of the CPUs.
if (!idle_samples->empty()) {
// When committing the first sample, resize the data vector to the number of
// CPUs on the system. This number should be the same as the number of
// samples in |idle_samples|.
if (cpu_idle_state_data_.empty()) {
cpu_idle_state_data_.resize(idle_samples->size());
} else {
DCHECK_EQ(idle_samples->size(), cpu_idle_state_data_.size());
}
for (size_t i = 0; i < cpu_idle_state_data_.size(); ++i)
AddSample(&cpu_idle_state_data_[i], (*idle_samples)[i]);
cpu_idle_state_names_ = *cpu_idle_state_names;
}
if (!freq_samples->empty()) {
// As with idle samples, resize the data vector before committing the first
// sample.
if (cpu_freq_state_data_.empty()) {
cpu_freq_state_data_.resize(freq_samples->size());
} else {
DCHECK_EQ(freq_samples->size(), cpu_freq_state_data_.size());
}
for (size_t i = 0; i < cpu_freq_state_data_.size(); ++i)
AddSample(&cpu_freq_state_data_[i], (*freq_samples)[i]);
cpu_freq_state_names_ = *cpu_freq_state_names;
}
}
CpuDataCollector::StateOccupancySample::StateOccupancySample()
: cpu_online(false) {
}
CpuDataCollector::StateOccupancySample::StateOccupancySample(
const StateOccupancySample& other) = default;
CpuDataCollector::StateOccupancySample::~StateOccupancySample() {
}
} // namespace ash