use super::*;
use core::convert::{TryFrom, TryInto};
#[cfg(feature = "serde")]
use core::marker::PhantomData;
#[cfg(feature = "serde")]
use serde::de::{
Deserialize, Deserializer, Error as DeserializeError, SeqAccess, Visitor,
};
#[cfg(feature = "serde")]
use serde::ser::{Serialize, SerializeSeq, Serializer};
/// Helper to make an `ArrayVec`.
///
/// You specify the backing array type, and optionally give all the elements you
/// want to initially place into the array.
///
/// ```rust
/// use tinyvec::*;
///
/// // The backing array type can be specified in the macro call
/// let empty_av = array_vec!([u8; 16]);
/// let some_ints = array_vec!([i32; 4] => 1, 2, 3);
///
/// // Or left to inference
/// let empty_av: ArrayVec<[u8; 10]> = array_vec!();
/// let some_ints: ArrayVec<[u8; 10]> = array_vec!(5, 6, 7, 8);
/// ```
#[macro_export]
macro_rules! array_vec {
($array_type:ty => $($elem:expr),* $(,)?) => {
{
let mut av: $crate::ArrayVec<$array_type> = Default::default();
$( av.push($elem); )*
av
}
};
($array_type:ty) => {
$crate::ArrayVec::<$array_type>::default()
};
($($elem:expr),*) => {
$crate::array_vec!(_ => $($elem),*)
};
($elem:expr; $n:expr) => {
$crate::ArrayVec::from([$elem; $n])
};
() => {
$crate::array_vec!(_)
};
}
/// An array-backed, vector-like data structure.
///
/// * `ArrayVec` has a fixed capacity, equal to the minimum of the array size
/// and `u16::MAX`. Note that not all capacities are necessarily supported by
/// default. See comments in [`Array`].
/// * `ArrayVec` has a variable length, as you add and remove elements. Attempts
/// to fill the vec beyond its capacity will cause a panic.
/// * All of the vec's array slots are always initialized in terms of Rust's
/// memory model. When you remove a element from a location, the old value at
/// that location is replaced with the type's default value.
///
/// The overall API of this type is intended to, as much as possible, emulate
/// the API of the [`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html)
/// type.
///
/// ## Construction
///
/// You can use the `array_vec!` macro similarly to how you might use the `vec!`
/// macro. Specify the array type, then optionally give all the initial values
/// you want to have.
/// ```rust
/// # use tinyvec::*;
/// let some_ints = array_vec!([i32; 4] => 1, 2, 3);
/// assert_eq!(some_ints.len(), 3);
/// ```
///
/// The [`default`](ArrayVec::new) for an `ArrayVec` is to have a default
/// array with length 0. The [`new`](ArrayVec::new) method is the same as
/// calling `default`
/// ```rust
/// # use tinyvec::*;
/// let some_ints = ArrayVec::<[i32; 7]>::default();
/// assert_eq!(some_ints.len(), 0);
///
/// let more_ints = ArrayVec::<[i32; 7]>::new();
/// assert_eq!(some_ints, more_ints);
/// ```
///
/// If you have an array and want the _whole thing_ so count as being "in" the
/// new `ArrayVec` you can use one of the `from` implementations. If you want
/// _part of_ the array then you can use
/// [`from_array_len`](ArrayVec::from_array_len):
/// ```rust
/// # use tinyvec::*;
/// let some_ints = ArrayVec::from([5, 6, 7, 8]);
/// assert_eq!(some_ints.len(), 4);
///
/// let more_ints = ArrayVec::from_array_len([5, 6, 7, 8], 2);
/// assert_eq!(more_ints.len(), 2);
///
/// let no_ints: ArrayVec<[u8; 5]> = ArrayVec::from_array_empty([1, 2, 3, 4, 5]);
/// assert_eq!(no_ints.len(), 0);
/// ```
#[repr(C)]
pub struct ArrayVec<A> {
len: u16,
pub(crate) data: A,
}
impl<A> Clone for ArrayVec<A>
where
A: Array + Clone,
A::Item: Clone,
{
#[inline]
fn clone(&self) -> Self {
Self { data: self.data.clone(), len: self.len }
}
#[inline]
fn clone_from(&mut self, o: &Self) {
let iter = self
.data
.as_slice_mut()
.iter_mut()
.zip(o.data.as_slice())
.take(self.len.max(o.len) as usize);
for (dst, src) in iter {
dst.clone_from(src)
}
if let Some(to_drop) =
self.data.as_slice_mut().get_mut((o.len as usize)..(self.len as usize))
{
to_drop.iter_mut().for_each(|x| drop(core::mem::take(x)));
}
self.len = o.len;
}
}
impl<A> Copy for ArrayVec<A>
where
A: Array + Copy,
A::Item: Copy,
{
}
impl<A: Array> Default for ArrayVec<A> {
#[inline]
fn default() -> Self {
Self { len: 0, data: A::default() }
}
}
impl<A: Array> Deref for ArrayVec<A> {
type Target = [A::Item];
#[inline(always)]
#[must_use]
fn deref(&self) -> &Self::Target {
&self.data.as_slice()[..self.len as usize]
}
}
impl<A: Array> DerefMut for ArrayVec<A> {
#[inline(always)]
#[must_use]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.data.as_slice_mut()[..self.len as usize]
}
}
impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for ArrayVec<A> {
type Output = <I as SliceIndex<[A::Item]>>::Output;
#[inline(always)]
#[must_use]
fn index(&self, index: I) -> &Self::Output {
&self.deref()[index]
}
}
impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for ArrayVec<A> {
#[inline(always)]
#[must_use]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
&mut self.deref_mut()[index]
}
}
#[cfg(feature = "serde")]
#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
impl<A: Array> Serialize for ArrayVec<A>
where
A::Item: Serialize,
{
#[must_use]
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut seq = serializer.serialize_seq(Some(self.len()))?;
for element in self.iter() {
seq.serialize_element(element)?;
}
seq.end()
}
}
#[cfg(feature = "serde")]
#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
impl<'de, A: Array> Deserialize<'de> for ArrayVec<A>
where
A::Item: Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_seq(ArrayVecVisitor(PhantomData))
}
}
#[cfg(feature = "arbitrary")]
#[cfg_attr(docs_rs, doc(cfg(feature = "arbitrary")))]
impl<'a, A> arbitrary::Arbitrary<'a> for ArrayVec<A>
where
A: Array,
A::Item: arbitrary::Arbitrary<'a>,
{
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
let max_len = A::CAPACITY.min(u16::MAX as usize) as u16;
let len = u.int_in_range::<u16>(0..=max_len)?;
let mut self_: Self = Default::default();
for _ in 0..len {
self_.push(u.arbitrary()?);
}
Ok(self_)
}
fn size_hint(depth: usize) -> (usize, Option<usize>) {
arbitrary::size_hint::recursion_guard(depth, |depth| {
let max_len = A::CAPACITY.min(u16::MAX as usize);
let inner = A::Item::size_hint(depth).1;
(0, inner.map(|inner| 2 + max_len * inner))
})
}
}
impl<A: Array> ArrayVec<A> {
/// Move all values from `other` into this vec.
///
/// ## Panics
/// * If the vec overflows its capacity
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 10] => 1, 2, 3);
/// let mut av2 = array_vec!([i32; 10] => 4, 5, 6);
/// av.append(&mut av2);
/// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]);
/// assert_eq!(av2, &[][..]);
/// ```
#[inline]
pub fn append(&mut self, other: &mut Self) {
assert!(
self.try_append(other).is_none(),
"ArrayVec::append> total length {} exceeds capacity {}!",
self.len() + other.len(),
A::CAPACITY
);
}
/// Move all values from `other` into this vec.
/// If appending would overflow the capacity, Some(other) is returned.
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);
/// let mut av2 = array_vec!([i32; 7] => 4, 5, 6);
/// av.append(&mut av2);
/// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]);
/// assert_eq!(av2, &[][..]);
///
/// let mut av3 = array_vec!([i32; 7] => 7, 8, 9);
/// assert!(av.try_append(&mut av3).is_some());
/// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]);
/// assert_eq!(av3, &[7, 8, 9][..]);
/// ```
#[inline]
pub fn try_append<'other>(
&mut self, other: &'other mut Self,
) -> Option<&'other mut Self> {
let new_len = self.len() + other.len();
if new_len > A::CAPACITY {
return Some(other);
}
let iter = other.iter_mut().map(core::mem::take);
for item in iter {
self.push(item);
}
other.set_len(0);
return None;
}
/// A `*mut` pointer to the backing array.
///
/// ## Safety
///
/// This pointer has provenance over the _entire_ backing array.
#[inline(always)]
#[must_use]
pub fn as_mut_ptr(&mut self) -> *mut A::Item {
self.data.as_slice_mut().as_mut_ptr()
}
/// Performs a `deref_mut`, into unique slice form.
#[inline(always)]
#[must_use]
pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
self.deref_mut()
}
/// A `*const` pointer to the backing array.
///
/// ## Safety
///
/// This pointer has provenance over the _entire_ backing array.
#[inline(always)]
#[must_use]
pub fn as_ptr(&self) -> *const A::Item {
self.data.as_slice().as_ptr()
}
/// Performs a `deref`, into shared slice form.
#[inline(always)]
#[must_use]
pub fn as_slice(&self) -> &[A::Item] {
self.deref()
}
/// The capacity of the `ArrayVec`.
///
/// This is fixed based on the array type, but can't yet be made a `const fn`
/// on Stable Rust.
#[inline(always)]
#[must_use]
pub fn capacity(&self) -> usize {
// Note: This shouldn't use A::CAPACITY, because unsafe code can't rely on
// any Array invariants. This ensures that at the very least, the returned
// value is a valid length for a subslice of the backing array.
self.data.as_slice().len().min(u16::MAX as usize)
}
/// Truncates the `ArrayVec` down to length 0.
#[inline(always)]
pub fn clear(&mut self) {
self.truncate(0)
}
/// Creates a draining iterator that removes the specified range in the vector
/// and yields the removed items.
///
/// ## Panics
/// * If the start is greater than the end
/// * If the end is past the edge of the vec.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 4] => 1, 2, 3);
/// let av2: ArrayVec<[i32; 4]> = av.drain(1..).collect();
/// assert_eq!(av.as_slice(), &[1][..]);
/// assert_eq!(av2.as_slice(), &[2, 3][..]);
///
/// av.drain(..);
/// assert_eq!(av.as_slice(), &[]);
/// ```
#[inline]
pub fn drain<R>(&mut self, range: R) -> ArrayVecDrain<'_, A::Item>
where
R: RangeBounds<usize>,
{
ArrayVecDrain::new(self, range)
}
/// Returns the inner array of the `ArrayVec`.
///
/// This returns the full array, even if the `ArrayVec` length is currently
/// less than that.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::{array_vec, ArrayVec};
/// let mut favorite_numbers = array_vec!([i32; 5] => 87, 48, 33, 9, 26);
/// assert_eq!(favorite_numbers.clone().into_inner(), [87, 48, 33, 9, 26]);
///
/// favorite_numbers.pop();
/// assert_eq!(favorite_numbers.into_inner(), [87, 48, 33, 9, 0]);
/// ```
///
/// A use for this function is to build an array from an iterator by first
/// collecting it into an `ArrayVec`.
///
/// ```rust
/// # use tinyvec::ArrayVec;
/// let arr_vec: ArrayVec<[i32; 10]> = (1..=3).cycle().take(10).collect();
/// let inner = arr_vec.into_inner();
/// assert_eq!(inner, [1, 2, 3, 1, 2, 3, 1, 2, 3, 1]);
/// ```
#[inline]
pub fn into_inner(self) -> A {
self.data
}
/// Clone each element of the slice into this `ArrayVec`.
///
/// ## Panics
/// * If the `ArrayVec` would overflow, this will panic.
#[inline]
pub fn extend_from_slice(&mut self, sli: &[A::Item])
where
A::Item: Clone,
{
if sli.is_empty() {
return;
}
let new_len = self.len as usize + sli.len();
assert!(
new_len <= A::CAPACITY,
"ArrayVec::extend_from_slice> total length {} exceeds capacity {}!",
new_len,
A::CAPACITY
);
let target = &mut self.data.as_slice_mut()[self.len as usize..new_len];
target.clone_from_slice(sli);
self.set_len(new_len);
}
/// Fill the vector until its capacity has been reached.
///
/// Successively fills unused space in the spare slice of the vector with
/// elements from the iterator. It then returns the remaining iterator
/// without exhausting it. This also allows appending the head of an
/// infinite iterator.
///
/// This is an alternative to `Extend::extend` method for cases where the
/// length of the iterator can not be checked. Since this vector can not
/// reallocate to increase its capacity, it is unclear what to do with
/// remaining elements in the iterator and the iterator itself. The
/// interface also provides no way to communicate this to the caller.
///
/// ## Panics
/// * If the `next` method of the provided iterator panics.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 4]);
/// let mut to_inf = av.fill(0..);
/// assert_eq!(&av[..], [0, 1, 2, 3]);
/// assert_eq!(to_inf.next(), Some(4));
/// ```
#[inline]
pub fn fill<I: IntoIterator<Item = A::Item>>(
&mut self, iter: I,
) -> I::IntoIter {
// If this is written as a call to push for each element in iter, the
// compiler emits code that updates the length for every element. The
// additional complexity from that length update is worth nearly 2x in
// the runtime of this function.
let mut iter = iter.into_iter();
let mut pushed = 0;
let to_take = self.capacity() - self.len();
let target = &mut self.data.as_slice_mut()[self.len as usize..];
for element in iter.by_ref().take(to_take) {
target[pushed] = element;
pushed += 1;
}
self.len += pushed as u16;
iter
}
/// Wraps up an array and uses the given length as the initial length.
///
/// If you want to simply use the full array, use `from` instead.
///
/// ## Panics
///
/// * The length specified must be less than or equal to the capacity of the
/// array.
#[inline]
#[must_use]
#[allow(clippy::match_wild_err_arm)]
pub fn from_array_len(data: A, len: usize) -> Self {
match Self::try_from_array_len(data, len) {
Ok(out) => out,
Err(_) => panic!(
"ArrayVec::from_array_len> length {} exceeds capacity {}!",
len,
A::CAPACITY
),
}
}
/// Inserts an item at the position given, moving all following elements +1
/// index.
///
/// ## Panics
/// * If `index` > `len`
/// * If the capacity is exhausted
///
/// ## Example
/// ```rust
/// use tinyvec::*;
/// let mut av = array_vec!([i32; 10] => 1, 2, 3);
/// av.insert(1, 4);
/// assert_eq!(av.as_slice(), &[1, 4, 2, 3]);
/// av.insert(4, 5);
/// assert_eq!(av.as_slice(), &[1, 4, 2, 3, 5]);
/// ```
#[inline]
pub fn insert(&mut self, index: usize, item: A::Item) {
let x = self.try_insert(index, item);
assert!(x.is_none(), "ArrayVec::insert> capacity overflow!");
}
/// Tries to insert an item at the position given, moving all following
/// elements +1 index.
/// Returns back the element if the capacity is exhausted,
/// otherwise returns None.
///
/// ## Panics
/// * If `index` > `len`
///
/// ## Example
/// ```rust
/// use tinyvec::*;
/// let mut av = array_vec!([&'static str; 4] => "one", "two", "three");
/// av.insert(1, "four");
/// assert_eq!(av.as_slice(), &["one", "four", "two", "three"]);
/// assert_eq!(av.try_insert(4, "five"), Some("five"));
/// ```
#[inline]
pub fn try_insert(
&mut self, index: usize, mut item: A::Item,
) -> Option<A::Item> {
assert!(
index <= self.len as usize,
"ArrayVec::try_insert> index {} is out of bounds {}",
index,
self.len
);
// A previous implementation used self.try_push and slice::rotate_right
// rotate_right and rotate_left generate a huge amount of code and fail to
// inline; calling them here incurs the cost of all the cases they
// handle even though we're rotating a usually-small array by a constant
// 1 offset. This swap-based implementation benchmarks much better for
// small array lengths in particular.
if (self.len as usize) < A::CAPACITY {
self.len += 1;
} else {
return Some(item);
}
let target = &mut self.as_mut_slice()[index..];
for i in 0..target.len() {
core::mem::swap(&mut item, &mut target[i]);
}
return None;
}
/// Checks if the length is 0.
#[inline(always)]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// The length of the `ArrayVec` (in elements).
#[inline(always)]
#[must_use]
pub fn len(&self) -> usize {
self.len as usize
}
/// Makes a new, empty `ArrayVec`.
#[inline(always)]
#[must_use]
pub fn new() -> Self {
Self::default()
}
/// Remove and return the last element of the vec, if there is one.
///
/// ## Failure
/// * If the vec is empty you get `None`.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 10] => 1, 2);
/// assert_eq!(av.pop(), Some(2));
/// assert_eq!(av.pop(), Some(1));
/// assert_eq!(av.pop(), None);
/// ```
#[inline]
pub fn pop(&mut self) -> Option<A::Item> {
if self.len > 0 {
self.len -= 1;
let out =
core::mem::take(&mut self.data.as_slice_mut()[self.len as usize]);
Some(out)
} else {
None
}
}
/// Place an element onto the end of the vec.
///
/// ## Panics
/// * If the length of the vec would overflow the capacity.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 2]);
/// assert_eq!(&av[..], []);
/// av.push(1);
/// assert_eq!(&av[..], [1]);
/// av.push(2);
/// assert_eq!(&av[..], [1, 2]);
/// // av.push(3); this would overflow the ArrayVec and panic!
/// ```
#[inline(always)]
pub fn push(&mut self, val: A::Item) {
let x = self.try_push(val);
assert!(x.is_none(), "ArrayVec::push> capacity overflow!");
}
/// Tries to place an element onto the end of the vec.\
/// Returns back the element if the capacity is exhausted,
/// otherwise returns None.
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 2]);
/// assert_eq!(av.as_slice(), []);
/// assert_eq!(av.try_push(1), None);
/// assert_eq!(&av[..], [1]);
/// assert_eq!(av.try_push(2), None);
/// assert_eq!(&av[..], [1, 2]);
/// assert_eq!(av.try_push(3), Some(3));
/// ```
#[inline(always)]
pub fn try_push(&mut self, val: A::Item) -> Option<A::Item> {
debug_assert!(self.len as usize <= A::CAPACITY);
let itemref = match self.data.as_slice_mut().get_mut(self.len as usize) {
None => return Some(val),
Some(x) => x,
};
*itemref = val;
self.len += 1;
return None;
}
/// Removes the item at `index`, shifting all others down by one index.
///
/// Returns the removed element.
///
/// ## Panics
///
/// * If the index is out of bounds.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 4] => 1, 2, 3);
/// assert_eq!(av.remove(1), 2);
/// assert_eq!(&av[..], [1, 3]);
/// ```
#[inline]
pub fn remove(&mut self, index: usize) -> A::Item {
let targets: &mut [A::Item] = &mut self.deref_mut()[index..];
let item = core::mem::take(&mut targets[0]);
// A previous implementation used rotate_left
// rotate_right and rotate_left generate a huge amount of code and fail to
// inline; calling them here incurs the cost of all the cases they
// handle even though we're rotating a usually-small array by a constant
// 1 offset. This swap-based implementation benchmarks much better for
// small array lengths in particular.
for i in 0..targets.len() - 1 {
targets.swap(i, i + 1);
}
self.len -= 1;
item
}
/// As [`resize_with`](ArrayVec::resize_with)
/// and it clones the value as the closure.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
///
/// let mut av = array_vec!([&str; 10] => "hello");
/// av.resize(3, "world");
/// assert_eq!(&av[..], ["hello", "world", "world"]);
///
/// let mut av = array_vec!([i32; 10] => 1, 2, 3, 4);
/// av.resize(2, 0);
/// assert_eq!(&av[..], [1, 2]);
/// ```
#[inline]
pub fn resize(&mut self, new_len: usize, new_val: A::Item)
where
A::Item: Clone,
{
self.resize_with(new_len, || new_val.clone())
}
/// Resize the vec to the new length.
///
/// If it needs to be longer, it's filled with repeated calls to the provided
/// function. If it needs to be shorter, it's truncated.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
///
/// let mut av = array_vec!([i32; 10] => 1, 2, 3);
/// av.resize_with(5, Default::default);
/// assert_eq!(&av[..], [1, 2, 3, 0, 0]);
///
/// let mut av = array_vec!([i32; 10]);
/// let mut p = 1;
/// av.resize_with(4, || {
/// p *= 2;
/// p
/// });
/// assert_eq!(&av[..], [2, 4, 8, 16]);
/// ```
#[inline]
pub fn resize_with<F: FnMut() -> A::Item>(
&mut self, new_len: usize, mut f: F,
) {
match new_len.checked_sub(self.len as usize) {
None => self.truncate(new_len),
Some(new_elements) => {
for _ in 0..new_elements {
self.push(f());
}
}
}
}
/// Walk the vec and keep only the elements that pass the predicate given.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
///
/// let mut av = array_vec!([i32; 10] => 1, 1, 2, 3, 3, 4);
/// av.retain(|&x| x % 2 == 0);
/// assert_eq!(&av[..], [2, 4]);
/// ```
#[inline]
pub fn retain<F: FnMut(&A::Item) -> bool>(&mut self, mut acceptable: F) {
// Drop guard to contain exactly the remaining elements when the test
// panics.
struct JoinOnDrop<'vec, Item> {
items: &'vec mut [Item],
done_end: usize,
// Start of tail relative to `done_end`.
tail_start: usize,
}
impl<Item> Drop for JoinOnDrop<'_, Item> {
fn drop(&mut self) {
self.items[self.done_end..].rotate_left(self.tail_start);
}
}
let mut rest = JoinOnDrop {
items: &mut self.data.as_slice_mut()[..self.len as usize],
done_end: 0,
tail_start: 0,
};
let len = self.len as usize;
for idx in 0..len {
// Loop start invariant: idx = rest.done_end + rest.tail_start
if !acceptable(&rest.items[idx]) {
let _ = core::mem::take(&mut rest.items[idx]);
self.len -= 1;
rest.tail_start += 1;
} else {
rest.items.swap(rest.done_end, idx);
rest.done_end += 1;
}
}
}
/// Retains only the elements specified by the predicate, passing a mutable
/// reference to it.
///
/// In other words, remove all elements e such that f(&mut e) returns false.
/// This method operates in place, visiting each element exactly once in the
/// original order, and preserves the order of the retained elements.
///
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
///
/// let mut av = array_vec!([i32; 10] => 1, 1, 2, 3, 3, 4);
/// av.retain_mut(|x| if *x % 2 == 0 { *x *= 2; true } else { false });
/// assert_eq!(&av[..], [4, 8]);
/// ```
#[inline]
pub fn retain_mut<F>(&mut self, mut acceptable: F)
where
F: FnMut(&mut A::Item) -> bool,
{
// Drop guard to contain exactly the remaining elements when the test
// panics.
struct JoinOnDrop<'vec, Item> {
items: &'vec mut [Item],
done_end: usize,
// Start of tail relative to `done_end`.
tail_start: usize,
}
impl<Item> Drop for JoinOnDrop<'_, Item> {
fn drop(&mut self) {
self.items[self.done_end..].rotate_left(self.tail_start);
}
}
let mut rest = JoinOnDrop {
items: &mut self.data.as_slice_mut()[..self.len as usize],
done_end: 0,
tail_start: 0,
};
let len = self.len as usize;
for idx in 0..len {
// Loop start invariant: idx = rest.done_end + rest.tail_start
if !acceptable(&mut rest.items[idx]) {
let _ = core::mem::take(&mut rest.items[idx]);
self.len -= 1;
rest.tail_start += 1;
} else {
rest.items.swap(rest.done_end, idx);
rest.done_end += 1;
}
}
}
/// Forces the length of the vector to `new_len`.
///
/// ## Panics
/// * If `new_len` is greater than the vec's capacity.
///
/// ## Safety
/// * This is a fully safe operation! The inactive memory already counts as
/// "initialized" by Rust's rules.
/// * Other than "the memory is initialized" there are no other guarantees
/// regarding what you find in the inactive portion of the vec.
#[inline(always)]
pub fn set_len(&mut self, new_len: usize) {
if new_len > A::CAPACITY {
// Note(Lokathor): Technically we don't have to panic here, and we could
// just let some other call later on trigger a panic on accident when the
// length is wrong. However, it's a lot easier to catch bugs when things
// are more "fail-fast".
panic!(
"ArrayVec::set_len> new length {} exceeds capacity {}",
new_len,
A::CAPACITY
)
}
let new_len: u16 = new_len
.try_into()
.expect("ArrayVec::set_len> new length is not in range 0..=u16::MAX");
self.len = new_len;
}
/// Splits the collection at the point given.
///
/// * `[0, at)` stays in this vec
/// * `[at, len)` ends up in the new vec.
///
/// ## Panics
/// * if at > len
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 4] => 1, 2, 3);
/// let av2 = av.split_off(1);
/// assert_eq!(&av[..], [1]);
/// assert_eq!(&av2[..], [2, 3]);
/// ```
#[inline]
pub fn split_off(&mut self, at: usize) -> Self {
// FIXME: should this just use drain into the output?
if at > self.len() {
panic!(
"ArrayVec::split_off> at value {} exceeds length of {}",
at, self.len
);
}
let mut new = Self::default();
let moves = &mut self.as_mut_slice()[at..];
let split_len = moves.len();
let targets = &mut new.data.as_slice_mut()[..split_len];
moves.swap_with_slice(targets);
/* moves.len() <= u16::MAX, so these are surely in u16 range */
new.len = split_len as u16;
self.len = at as u16;
new
}
/// Creates a splicing iterator that removes the specified range in the
/// vector, yields the removed items, and replaces them with elements from
/// the provided iterator.
///
/// `splice` fuses the provided iterator, so elements after the first `None`
/// are ignored.
///
/// ## Panics
/// * If the start is greater than the end.
/// * If the end is past the edge of the vec.
/// * If the provided iterator panics.
/// * If the new length would overflow the capacity of the array. Because
/// `ArrayVecSplice` adds elements to this vec in its destructor when
/// necessary, this panic would occur when it is dropped.
///
/// ## Example
/// ```rust
/// use tinyvec::*;
/// let mut av = array_vec!([i32; 4] => 1, 2, 3);
/// let av2: ArrayVec<[i32; 4]> = av.splice(1.., 4..=6).collect();
/// assert_eq!(av.as_slice(), &[1, 4, 5, 6][..]);
/// assert_eq!(av2.as_slice(), &[2, 3][..]);
///
/// av.splice(.., None);
/// assert_eq!(av.as_slice(), &[]);
/// ```
#[inline]
pub fn splice<R, I>(
&mut self, range: R, replacement: I,
) -> ArrayVecSplice<'_, A, core::iter::Fuse<I::IntoIter>>
where
R: RangeBounds<usize>,
I: IntoIterator<Item = A::Item>,
{
use core::ops::Bound;
let start = match range.start_bound() {
Bound::Included(x) => *x,
Bound::Excluded(x) => x.saturating_add(1),
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(x) => x.saturating_add(1),
Bound::Excluded(x) => *x,
Bound::Unbounded => self.len(),
};
assert!(
start <= end,
"ArrayVec::splice> Illegal range, {} to {}",
start,
end
);
assert!(
end <= self.len(),
"ArrayVec::splice> Range ends at {} but length is only {}!",
end,
self.len()
);
ArrayVecSplice {
removal_start: start,
removal_end: end,
parent: self,
replacement: replacement.into_iter().fuse(),
}
}
/// Remove an element, swapping the end of the vec into its place.
///
/// ## Panics
/// * If the index is out of bounds.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([&str; 4] => "foo", "bar", "quack", "zap");
///
/// assert_eq!(av.swap_remove(1), "bar");
/// assert_eq!(&av[..], ["foo", "zap", "quack"]);
///
/// assert_eq!(av.swap_remove(0), "foo");
/// assert_eq!(&av[..], ["quack", "zap"]);
/// ```
#[inline]
pub fn swap_remove(&mut self, index: usize) -> A::Item {
assert!(
index < self.len(),
"ArrayVec::swap_remove> index {} is out of bounds {}",
index,
self.len
);
if index == self.len() - 1 {
self.pop().unwrap()
} else {
let i = self.pop().unwrap();
replace(&mut self[index], i)
}
}
/// Reduces the vec's length to the given value.
///
/// If the vec is already shorter than the input, nothing happens.
#[inline]
pub fn truncate(&mut self, new_len: usize) {
if new_len >= self.len as usize {
return;
}
if needs_drop::<A::Item>() {
let len = self.len as usize;
self.data.as_slice_mut()[new_len..len]
.iter_mut()
.map(core::mem::take)
.for_each(drop);
}
/* new_len is less than self.len */
self.len = new_len as u16;
}
/// Wraps an array, using the given length as the starting length.
///
/// If you want to use the whole length of the array, you can just use the
/// `From` impl.
///
/// ## Failure
///
/// If the given length is greater than the capacity of the array this will
/// error, and you'll get the array back in the `Err`.
#[inline]
pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> {
/* Note(Soveu): Should we allow A::CAPACITY > u16::MAX for now? */
if len <= A::CAPACITY {
Ok(Self { data, len: len as u16 })
} else {
Err(data)
}
}
}
impl<A> ArrayVec<A> {
/// Wraps up an array as a new empty `ArrayVec`.
///
/// If you want to simply use the full array, use `from` instead.
///
/// ## Examples
///
/// This method in particular allows to create values for statics:
///
/// ```rust
/// # use tinyvec::ArrayVec;
/// static DATA: ArrayVec<[u8; 5]> = ArrayVec::from_array_empty([0; 5]);
/// assert_eq!(DATA.len(), 0);
/// ```
///
/// But of course it is just an normal empty `ArrayVec`:
///
/// ```rust
/// # use tinyvec::ArrayVec;
/// let mut data = ArrayVec::from_array_empty([1, 2, 3, 4]);
/// assert_eq!(&data[..], &[]);
/// data.push(42);
/// assert_eq!(&data[..], &[42]);
/// ```
#[inline]
#[must_use]
pub const fn from_array_empty(data: A) -> Self {
Self { data, len: 0 }
}
}
#[cfg(feature = "grab_spare_slice")]
impl<A: Array> ArrayVec<A> {
/// Obtain the shared slice of the array _after_ the active memory.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 4]);
/// assert_eq!(av.grab_spare_slice().len(), 4);
/// av.push(10);
/// av.push(11);
/// av.push(12);
/// av.push(13);
/// assert_eq!(av.grab_spare_slice().len(), 0);
/// ```
#[inline(always)]
pub fn grab_spare_slice(&self) -> &[A::Item] {
&self.data.as_slice()[self.len as usize..]
}
/// Obtain the mutable slice of the array _after_ the active memory.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 4]);
/// assert_eq!(av.grab_spare_slice_mut().len(), 4);
/// av.push(10);
/// av.push(11);
/// assert_eq!(av.grab_spare_slice_mut().len(), 2);
/// ```
#[inline(always)]
pub fn grab_spare_slice_mut(&mut self) -> &mut [A::Item] {
&mut self.data.as_slice_mut()[self.len as usize..]
}
}
#[cfg(feature = "nightly_slice_partition_dedup")]
impl<A: Array> ArrayVec<A> {
/// De-duplicates the vec contents.
#[inline(always)]
pub fn dedup(&mut self)
where
A::Item: PartialEq,
{
self.dedup_by(|a, b| a == b)
}
/// De-duplicates the vec according to the predicate given.
#[inline(always)]
pub fn dedup_by<F>(&mut self, same_bucket: F)
where
F: FnMut(&mut A::Item, &mut A::Item) -> bool,
{
let len = {
let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket);
dedup.len()
};
self.truncate(len);
}
/// De-duplicates the vec according to the key selector given.
#[inline(always)]
pub fn dedup_by_key<F, K>(&mut self, mut key: F)
where
F: FnMut(&mut A::Item) -> K,
K: PartialEq,
{
self.dedup_by(|a, b| key(a) == key(b))
}
}
impl<A> ArrayVec<A> {
/// Returns the reference to the inner array of the `ArrayVec`.
///
/// This returns the full array, even if the `ArrayVec` length is currently
/// less than that.
#[inline(always)]
#[must_use]
pub const fn as_inner(&self) -> &A {
&self.data
}
}
/// Splicing iterator for `ArrayVec`
/// See [`ArrayVec::splice`](ArrayVec::<A>::splice)
pub struct ArrayVecSplice<'p, A: Array, I: Iterator<Item = A::Item>> {
parent: &'p mut ArrayVec<A>,
removal_start: usize,
removal_end: usize,
replacement: I,
}
impl<'p, A: Array, I: Iterator<Item = A::Item>> Iterator
for ArrayVecSplice<'p, A, I>
{
type Item = A::Item;
#[inline]
fn next(&mut self) -> Option<A::Item> {
if self.removal_start < self.removal_end {
match self.replacement.next() {
Some(replacement) => {
let removed = core::mem::replace(
&mut self.parent[self.removal_start],
replacement,
);
self.removal_start += 1;
Some(removed)
}
None => {
let removed = self.parent.remove(self.removal_start);
self.removal_end -= 1;
Some(removed)
}
}
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<'p, A, I> ExactSizeIterator for ArrayVecSplice<'p, A, I>
where
A: Array,
I: Iterator<Item = A::Item>,
{
#[inline]
fn len(&self) -> usize {
self.removal_end - self.removal_start
}
}
impl<'p, A, I> FusedIterator for ArrayVecSplice<'p, A, I>
where
A: Array,
I: Iterator<Item = A::Item>,
{
}
impl<'p, A, I> DoubleEndedIterator for ArrayVecSplice<'p, A, I>
where
A: Array,
I: Iterator<Item = A::Item> + DoubleEndedIterator,
{
#[inline]
fn next_back(&mut self) -> Option<A::Item> {
if self.removal_start < self.removal_end {
match self.replacement.next_back() {
Some(replacement) => {
let removed = core::mem::replace(
&mut self.parent[self.removal_end - 1],
replacement,
);
self.removal_end -= 1;
Some(removed)
}
None => {
let removed = self.parent.remove(self.removal_end - 1);
self.removal_end -= 1;
Some(removed)
}
}
} else {
None
}
}
}
impl<'p, A: Array, I: Iterator<Item = A::Item>> Drop
for ArrayVecSplice<'p, A, I>
{
#[inline]
fn drop(&mut self) {
for _ in self.by_ref() {}
// FIXME: reserve lower bound of size_hint
for replacement in self.replacement.by_ref() {
self.parent.insert(self.removal_end, replacement);
self.removal_end += 1;
}
}
}
impl<A: Array> AsMut<[A::Item]> for ArrayVec<A> {
#[inline(always)]
#[must_use]
fn as_mut(&mut self) -> &mut [A::Item] {
&mut *self
}
}
impl<A: Array> AsRef<[A::Item]> for ArrayVec<A> {
#[inline(always)]
#[must_use]
fn as_ref(&self) -> &[A::Item] {
&*self
}
}
impl<A: Array> Borrow<[A::Item]> for ArrayVec<A> {
#[inline(always)]
#[must_use]
fn borrow(&self) -> &[A::Item] {
&*self
}
}
impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A> {
#[inline(always)]
#[must_use]
fn borrow_mut(&mut self) -> &mut [A::Item] {
&mut *self
}
}
impl<A: Array> Extend<A::Item> for ArrayVec<A> {
#[inline]
fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) {
for t in iter {
self.push(t)
}
}
}
impl<A: Array> From<A> for ArrayVec<A> {
#[inline(always)]
#[must_use]
/// The output has a length equal to the full array.
///
/// If you want to select a length, use
/// [`from_array_len`](ArrayVec::from_array_len)
fn from(data: A) -> Self {
let len: u16 = data
.as_slice()
.len()
.try_into()
.expect("ArrayVec::from> length must be in range 0..=u16::MAX");
Self { len, data }
}
}
/// The error type returned when a conversion from a slice to an [`ArrayVec`]
/// fails.
#[derive(Debug, Copy, Clone)]
pub struct TryFromSliceError(());
impl core::fmt::Display for TryFromSliceError {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.write_str("could not convert slice to ArrayVec")
}
}
#[cfg(feature = "std")]
impl std::error::Error for TryFromSliceError {}
impl<T, A> TryFrom<&'_ [T]> for ArrayVec<A>
where
T: Clone + Default,
A: Array<Item = T>,
{
type Error = TryFromSliceError;
#[inline]
/// The output has a length equal to that of the slice, with the same capacity
/// as `A`.
fn try_from(slice: &[T]) -> Result<Self, Self::Error> {
if slice.len() > A::CAPACITY {
Err(TryFromSliceError(()))
} else {
let mut arr = ArrayVec::new();
// We do not use ArrayVec::extend_from_slice, because it looks like LLVM
// fails to deduplicate all the length-checking logic between the
// above if and the contents of that method, thus producing much
// slower code. Unlike many of the other optimizations in this
// crate, this one is worth keeping an eye on. I see no reason, for
// any element type, that these should produce different code. But
// they do. (rustc 1.51.0)
arr.set_len(slice.len());
arr.as_mut_slice().clone_from_slice(slice);
Ok(arr)
}
}
}
impl<A: Array> FromIterator<A::Item> for ArrayVec<A> {
#[inline]
#[must_use]
fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self {
let mut av = Self::default();
for i in iter {
av.push(i)
}
av
}
}
/// Iterator for consuming an `ArrayVec` and returning owned elements.
pub struct ArrayVecIterator<A: Array> {
base: u16,
tail: u16,
data: A,
}
impl<A: Array> ArrayVecIterator<A> {
/// Returns the remaining items of this iterator as a slice.
#[inline]
#[must_use]
pub fn as_slice(&self) -> &[A::Item] {
&self.data.as_slice()[self.base as usize..self.tail as usize]
}
}
impl<A: Array> FusedIterator for ArrayVecIterator<A> {}
impl<A: Array> Iterator for ArrayVecIterator<A> {
type Item = A::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let slice =
&mut self.data.as_slice_mut()[self.base as usize..self.tail as usize];
let itemref = slice.first_mut()?;
self.base += 1;
return Some(core::mem::take(itemref));
}
#[inline(always)]
#[must_use]
fn size_hint(&self) -> (usize, Option<usize>) {
let s = self.tail - self.base;
let s = s as usize;
(s, Some(s))
}
#[inline(always)]
fn count(self) -> usize {
self.size_hint().0
}
#[inline]
fn last(mut self) -> Option<Self::Item> {
self.next_back()
}
#[inline]
fn nth(&mut self, n: usize) -> Option<A::Item> {
let slice = &mut self.data.as_slice_mut();
let slice = &mut slice[self.base as usize..self.tail as usize];
if let Some(x) = slice.get_mut(n) {
/* n is in range [0 .. self.tail - self.base) so in u16 range */
self.base += n as u16 + 1;
return Some(core::mem::take(x));
}
self.base = self.tail;
return None;
}
}
impl<A: Array> DoubleEndedIterator for ArrayVecIterator<A> {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
let slice =
&mut self.data.as_slice_mut()[self.base as usize..self.tail as usize];
let item = slice.last_mut()?;
self.tail -= 1;
return Some(core::mem::take(item));
}
#[inline]
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
let base = self.base as usize;
let tail = self.tail as usize;
let slice = &mut self.data.as_slice_mut()[base..tail];
let n = n.saturating_add(1);
if let Some(n) = slice.len().checked_sub(n) {
let item = &mut slice[n];
/* n is in [0..self.tail - self.base] range, so in u16 range */
self.tail = self.base + n as u16;
return Some(core::mem::take(item));
}
self.tail = self.base;
return None;
}
}
impl<A: Array> ExactSizeIterator for ArrayVecIterator<A> {
#[inline]
fn len(&self) -> usize {
self.size_hint().0
}
}
impl<A: Array> Debug for ArrayVecIterator<A>
where
A::Item: Debug,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_tuple("ArrayVecIterator").field(&self.as_slice()).finish()
}
}
impl<A: Array> IntoIterator for ArrayVec<A> {
type Item = A::Item;
type IntoIter = ArrayVecIterator<A>;
#[inline(always)]
#[must_use]
fn into_iter(self) -> Self::IntoIter {
ArrayVecIterator { base: 0, tail: self.len, data: self.data }
}
}
impl<'a, A: Array> IntoIterator for &'a mut ArrayVec<A> {
type Item = &'a mut A::Item;
type IntoIter = core::slice::IterMut<'a, A::Item>;
#[inline(always)]
#[must_use]
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<'a, A: Array> IntoIterator for &'a ArrayVec<A> {
type Item = &'a A::Item;
type IntoIter = core::slice::Iter<'a, A::Item>;
#[inline(always)]
#[must_use]
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<A: Array> PartialEq for ArrayVec<A>
where
A::Item: PartialEq,
{
#[inline]
#[must_use]
fn eq(&self, other: &Self) -> bool {
self.as_slice().eq(other.as_slice())
}
}
impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq {}
impl<A: Array> PartialOrd for ArrayVec<A>
where
A::Item: PartialOrd,
{
#[inline]
#[must_use]
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
self.as_slice().partial_cmp(other.as_slice())
}
}
impl<A: Array> Ord for ArrayVec<A>
where
A::Item: Ord,
{
#[inline]
#[must_use]
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
self.as_slice().cmp(other.as_slice())
}
}
impl<A: Array> PartialEq<&A> for ArrayVec<A>
where
A::Item: PartialEq,
{
#[inline]
#[must_use]
fn eq(&self, other: &&A) -> bool {
self.as_slice().eq(other.as_slice())
}
}
impl<A: Array> PartialEq<&[A::Item]> for ArrayVec<A>
where
A::Item: PartialEq,
{
#[inline]
#[must_use]
fn eq(&self, other: &&[A::Item]) -> bool {
self.as_slice().eq(*other)
}
}
impl<A: Array> Hash for ArrayVec<A>
where
A::Item: Hash,
{
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.as_slice().hash(state)
}
}
#[cfg(feature = "experimental_write_impl")]
impl<A: Array<Item = u8>> core::fmt::Write for ArrayVec<A> {
fn write_str(&mut self, s: &str) -> core::fmt::Result {
let my_len = self.len();
let str_len = s.as_bytes().len();
if my_len + str_len <= A::CAPACITY {
let remainder = &mut self.data.as_slice_mut()[my_len..];
let target = &mut remainder[..str_len];
target.copy_from_slice(s.as_bytes());
Ok(())
} else {
Err(core::fmt::Error)
}
}
}
// // // // // // // //
// Formatting impls
// // // // // // // //
impl<A: Array> Binary for ArrayVec<A>
where
A::Item: Binary,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
if f.alternate() {
write!(f, "\n ")?;
}
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
}
Binary::fmt(elem, f)?;
}
if f.alternate() {
write!(f, ",\n")?;
}
write!(f, "]")
}
}
impl<A: Array> Debug for ArrayVec<A>
where
A::Item: Debug,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
if f.alternate() && !self.is_empty() {
write!(f, "\n ")?;
}
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
}
Debug::fmt(elem, f)?;
}
if f.alternate() && !self.is_empty() {
write!(f, ",\n")?;
}
write!(f, "]")
}
}
impl<A: Array> Display for ArrayVec<A>
where
A::Item: Display,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
if f.alternate() {
write!(f, "\n ")?;
}
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
}
Display::fmt(elem, f)?;
}
if f.alternate() {
write!(f, ",\n")?;
}
write!(f, "]")
}
}
impl<A: Array> LowerExp for ArrayVec<A>
where
A::Item: LowerExp,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
if f.alternate() {
write!(f, "\n ")?;
}
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
}
LowerExp::fmt(elem, f)?;
}
if f.alternate() {
write!(f, ",\n")?;
}
write!(f, "]")
}
}
impl<A: Array> LowerHex for ArrayVec<A>
where
A::Item: LowerHex,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
if f.alternate() {
write!(f, "\n ")?;
}
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
}
LowerHex::fmt(elem, f)?;
}
if f.alternate() {
write!(f, ",\n")?;
}
write!(f, "]")
}
}
impl<A: Array> Octal for ArrayVec<A>
where
A::Item: Octal,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
if f.alternate() {
write!(f, "\n ")?;
}
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
}
Octal::fmt(elem, f)?;
}
if f.alternate() {
write!(f, ",\n")?;
}
write!(f, "]")
}
}
impl<A: Array> Pointer for ArrayVec<A>
where
A::Item: Pointer,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
if f.alternate() {
write!(f, "\n ")?;
}
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
}
Pointer::fmt(elem, f)?;
}
if f.alternate() {
write!(f, ",\n")?;
}
write!(f, "]")
}
}
impl<A: Array> UpperExp for ArrayVec<A>
where
A::Item: UpperExp,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
if f.alternate() {
write!(f, "\n ")?;
}
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
}
UpperExp::fmt(elem, f)?;
}
if f.alternate() {
write!(f, ",\n")?;
}
write!(f, "]")
}
}
impl<A: Array> UpperHex for ArrayVec<A>
where
A::Item: UpperHex,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
if f.alternate() {
write!(f, "\n ")?;
}
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
}
UpperHex::fmt(elem, f)?;
}
if f.alternate() {
write!(f, ",\n")?;
}
write!(f, "]")
}
}
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(all(feature = "alloc", feature = "rustc_1_57"))]
use alloc::collections::TryReserveError;
#[cfg(feature = "alloc")]
impl<A: Array> ArrayVec<A> {
/// Drains all elements to a Vec, but reserves additional space
/// ```
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);
/// let v = av.drain_to_vec_and_reserve(10);
/// assert_eq!(v, &[1, 2, 3]);
/// assert_eq!(v.capacity(), 13);
/// ```
pub fn drain_to_vec_and_reserve(&mut self, n: usize) -> Vec<A::Item> {
let cap = n + self.len();
let mut v = Vec::with_capacity(cap);
let iter = self.iter_mut().map(core::mem::take);
v.extend(iter);
self.set_len(0);
return v;
}
/// Tries to drain all elements to a Vec, but reserves additional space.
///
/// # Errors
///
/// If the allocator reports a failure, then an error is returned.
///
/// ```
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);
/// let v = av.try_drain_to_vec_and_reserve(10);
/// assert!(matches!(v, Ok(_)));
/// let v = v.unwrap();
/// assert_eq!(v, &[1, 2, 3]);
/// assert_eq!(v.capacity(), 13);
/// ```
#[cfg(feature = "rustc_1_57")]
pub fn try_drain_to_vec_and_reserve(
&mut self, n: usize,
) -> Result<Vec<A::Item>, TryReserveError> {
let cap = n + self.len();
let mut v = Vec::new();
v.try_reserve(cap)?;
let iter = self.iter_mut().map(core::mem::take);
v.extend(iter);
self.set_len(0);
return Ok(v);
}
/// Drains all elements to a Vec
/// ```
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);
/// let v = av.drain_to_vec();
/// assert_eq!(v, &[1, 2, 3]);
/// assert_eq!(v.capacity(), 3);
/// ```
pub fn drain_to_vec(&mut self) -> Vec<A::Item> {
self.drain_to_vec_and_reserve(0)
}
/// Tries to drain all elements to a Vec.
///
/// # Errors
///
/// If the allocator reports a failure, then an error is returned.
///
/// ```
/// # use tinyvec::*;
/// let mut av = array_vec!([i32; 7] => 1, 2, 3);
/// let v = av.try_drain_to_vec();
/// assert!(matches!(v, Ok(_)));
/// let v = v.unwrap();
/// assert_eq!(v, &[1, 2, 3]);
/// // Vec may reserve more than necessary in order to prevent more future allocations.
/// assert!(v.capacity() >= 3);
/// ```
#[cfg(feature = "rustc_1_57")]
pub fn try_drain_to_vec(&mut self) -> Result<Vec<A::Item>, TryReserveError> {
self.try_drain_to_vec_and_reserve(0)
}
}
#[cfg(feature = "serde")]
struct ArrayVecVisitor<A: Array>(PhantomData<A>);
#[cfg(feature = "serde")]
impl<'de, A: Array> Visitor<'de> for ArrayVecVisitor<A>
where
A::Item: Deserialize<'de>,
{
type Value = ArrayVec<A>;
fn expecting(
&self, formatter: &mut core::fmt::Formatter,
) -> core::fmt::Result {
formatter.write_str("a sequence")
}
fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error>
where
S: SeqAccess<'de>,
{
let mut new_arrayvec: ArrayVec<A> = Default::default();
let mut idx = 0usize;
while let Some(value) = seq.next_element()? {
if new_arrayvec.len() >= new_arrayvec.capacity() {
return Err(DeserializeError::invalid_length(idx, &self));
}
new_arrayvec.push(value);
idx = idx + 1;
}
Ok(new_arrayvec)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn retain_mut_empty_vec() {
let mut av: ArrayVec<[i32; 4]> = ArrayVec::new();
av.retain_mut(|&mut x| x % 2 == 0);
assert_eq!(av.len(), 0);
}
#[test]
fn retain_mut_all_elements() {
let mut av: ArrayVec<[i32; 4]> = array_vec!([i32; 4] => 2, 4, 6, 8);
av.retain_mut(|&mut x| x % 2 == 0);
assert_eq!(av.len(), 4);
assert_eq!(av.as_slice(), &[2, 4, 6, 8]);
}
#[test]
fn retain_mut_some_elements() {
let mut av: ArrayVec<[i32; 4]> = array_vec!([i32; 4] => 1, 2, 3, 4);
av.retain_mut(|&mut x| x % 2 == 0);
assert_eq!(av.len(), 2);
assert_eq!(av.as_slice(), &[2, 4]);
}
#[test]
fn retain_mut_no_elements() {
let mut av: ArrayVec<[i32; 4]> = array_vec!([i32; 4] => 1, 3, 5, 7);
av.retain_mut(|&mut x| x % 2 == 0);
assert_eq!(av.len(), 0);
}
#[test]
fn retain_mut_zero_capacity() {
let mut av: ArrayVec<[i32; 0]> = ArrayVec::new();
av.retain_mut(|&mut x| x % 2 == 0);
assert_eq!(av.len(), 0);
}
}