chromium/third_party/tflite_support/patches/0010-Prefix-ASSIGN_OR_RETURN-and-RETURN_IF_ERROR-macros-w.patch

From a531e55610df260911dfa8038014d19dcff570d7 Mon Sep 17 00:00:00 2001
From: Daniel Cheng <[email protected]>
Date: Wed, 20 Sep 2023 09:07:05 -0700
Subject: [PATCH 10/10] Prefix ASSIGN_OR_RETURN and RETURN_IF_ERROR macros with
 TFLITE_.

Chrome's //base contains macros with the same name but with different
definitions. Prefix the third-party ones to avoid the conflict.

Change-Id: I5e4fd29433981b000555669ec3c16e8219ab44f4
---
 .../cc/port/default/status_macros.h           |  30 ++--
 .../cc/port/default/tflite_wrapper.cc         |  30 ++--
 .../cc/task/audio/audio_classifier.cc         |  12 +-
 .../cc/task/audio/audio_embedder.cc           |  12 +-
 .../cc/task/audio/utils/audio_utils.cc        |   2 +-
 .../cc/task/audio/utils/wav_io.cc             |  34 ++--
 .../cc/task/audio/utils/wav_io.h              |   2 +-
 .../cc/task/core/base_task_api.h              |   4 +-
 .../cc/task/core/classification_head.cc       |  14 +-
 .../cc/task/core/external_file_handler.cc     |   2 +-
 .../cc/task/core/score_calibration.cc         |   2 +-
 .../cc/task/core/task_api_factory.h           |  14 +-
 .../cc/task/core/task_utils.h                 |  10 +-
 .../cc/task/core/tflite_engine.cc             |  12 +-
 .../cc/task/processor/audio_preprocessor.cc   |  10 +-
 .../cc/task/processor/bert_preprocessor.cc    |  12 +-
 .../processor/classification_postprocessor.cc |   8 +-
 .../processor/classification_postprocessor.h  |   4 +-
 .../task/processor/embedding_postprocessor.cc |   4 +-
 .../cc/task/processor/embedding_searcher.cc   |  26 +--
 .../cc/task/processor/image_preprocessor.cc   |  12 +-
 .../cc/task/processor/processor.h             |   2 +-
 .../cc/task/processor/regex_preprocessor.cc   |  14 +-
 .../cc/task/processor/search_postprocessor.cc |  16 +-
 ...universal_sentence_encoder_preprocessor.cc |   6 +-
 .../cc/task/text/bert_clu_annotator.cc        |  38 ++---
 .../cc/task/text/bert_nl_classifier.cc        |  10 +-
 .../cc/task/text/bert_question_answerer.cc    |  26 +--
 .../cc/task/text/clu_lib/slot_repr.cc         |  12 +-
 .../task/text/clu_lib/slot_tagging_output.cc  |   4 +-
 .../cc/task/text/clu_lib/tflite_modules.cc    |  22 +--
 .../task/text/nlclassifier/nl_classifier.cc   |  22 +--
 .../cc/task/text/text_embedder.cc             |  22 +--
 .../cc/task/text/text_searcher.cc             |  18 +-
 .../text/universal_sentence_encoder_qa.cc     |  24 +--
 .../task/vision/core/base_vision_task_api.h   |   2 +-
 .../task/vision/core/classification_head.cc   |  14 +-
 .../cc/task/vision/image_classifier.cc        |  28 ++--
 .../cc/task/vision/image_embedder.cc          |  14 +-
 .../cc/task/vision/image_searcher.cc          |  10 +-
 .../cc/task/vision/image_segmenter.cc         |  30 ++--
 .../cc/task/vision/object_detector.cc         |  54 +++---
 .../vision/utils/frame_buffer_common_utils.cc |  10 +-
 .../task/vision/utils/frame_buffer_utils.cc   |  16 +-
 .../task/vision/utils/image_tensor_specs.cc   |   8 +-
 .../cc/task/vision/utils/image_utils.cc       |   4 +-
 .../vision/utils/libyuv_frame_buffer_utils.cc | 156 +++++++++---------
 .../cc/task/vision/utils/score_calibration.cc |   2 +-
 .../task/processor/embedding_searcher_test.cc |   6 +-
 .../test/task/vision/image_classifier_test.cc |   6 +-
 .../test/task/vision/image_segmenter_test.cc  |   8 +-
 .../test/task/vision/object_detector_test.cc  |  14 +-
 .../cc/text/tokenizers/tokenizer_utils.cc     |   6 +-
 .../cc/utils/jni_utils.cc                     |   2 +-
 .../sentencepiece_detokenizer_op.cc           |   6 +-
 .../sentencepiece_tokenizer_op.cc             |  14 +-
 .../audio/desktop/audio_classifier_lib.cc     |   8 +-
 .../text/desktop/bert_nl_classifier_demo.cc   |   2 +-
 .../desktop/bert_question_answerer_demo.cc    |   2 +-
 .../task/text/desktop/nl_classifier_demo.cc   |   2 +-
 .../task/text/desktop/text_embedder_demo.cc   |   8 +-
 .../task/text/desktop/text_searcher_demo.cc   |   4 +-
 .../vision/desktop/image_classifier_demo.cc   |   6 +-
 .../vision/desktop/image_embedder_demo.cc     |  16 +-
 .../vision/desktop/image_searcher_demo.cc     |   6 +-
 .../vision/desktop/image_segmenter_demo.cc    |  12 +-
 .../vision/desktop/object_detector_demo.cc    |  10 +-
 .../java/src/native/task/vision/jni_utils.cc  |   2 +-
 .../metadata/cc/metadata_extractor.cc         |  12 +-
 .../scann_ondevice/cc/index.cc                |   4 +-
 .../scann_ondevice/cc/index_builder.cc        |   2 +-
 71 files changed, 499 insertions(+), 499 deletions(-)

diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/port/default/status_macros.h b/third_party/tflite_support/src/tensorflow_lite_support/cc/port/default/status_macros.h
index 8970a0e3ca3a2..14029a1f02124 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/port/default/status_macros.h
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/port/default/status_macros.h
@@ -25,11 +25,11 @@ limitations under the License.
 //
 // For example:
 //   absl::Status MultiStepFunction() {
-//      RETURN_IF_ERROR(Function(args...));
-//      RETURN_IF_ERROR(foo.Method(args...));
+//      TFLITE_RETURN_IF_ERROR(Function(args...));
+//      TFLITE_RETURN_IF_ERROR(foo.Method(args...));
 //     return absl::OkStatus();
 //   }
-#define RETURN_IF_ERROR(expr)                                          \
+#define TFLITE_RETURN_IF_ERROR(expr)                                          \
   TFLITE_STATUS_MACROS_IMPL_ELSE_BLOCKER_                              \
   if (::tflite::support::status_macro_internal::StatusAdaptorForMacros \
           status_macro_internal_adaptor = {(expr)}) {                  \
@@ -49,8 +49,8 @@ limitations under the License.
 //
 // Interface:
 //
-//   ASSIGN_OR_RETURN(lhs, rexpr)
-//   ASSIGN_OR_RETURN(lhs, rexpr, error_expression);
+//   TFLITE_ASSIGN_OR_RETURN(lhs, rexpr)
+//   TFLITE_ASSIGN_OR_RETURN(lhs, rexpr, error_expression);
 //
 // WARNING: if lhs is parenthesized, the parentheses are removed. See examples
 // for more details.
@@ -60,35 +60,35 @@ limitations under the License.
 //
 // Example: Declaring and initializing a new variable (ValueType can be anything
 //          that can be initialized with assignment, including references):
-//   ASSIGN_OR_RETURN(ValueType value, MaybeGetValue(arg));
+//   TFLITE_ASSIGN_OR_RETURN(ValueType value, MaybeGetValue(arg));
 //
 // Example: Assigning to an existing variable:
 //   ValueType value;
-//   ASSIGN_OR_RETURN(value, MaybeGetValue(arg));
+//   TFLITE_ASSIGN_OR_RETURN(value, MaybeGetValue(arg));
 //
 // Example: Assigning to an expression with side effects:
 //   MyProto data;
-//   ASSIGN_OR_RETURN(*data.mutable_str(), MaybeGetValue(arg));
+//   TFLITE_ASSIGN_OR_RETURN(*data.mutable_str(), MaybeGetValue(arg));
 //   // No field "str" is added on error.
 //
 // Example: Assigning to a std::unique_ptr.
-//   ASSIGN_OR_RETURN(std::unique_ptr<T> ptr, MaybeGetPtr(arg));
+//   TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<T> ptr, MaybeGetPtr(arg));
 //
 // Example: Assigning to a map. Because of C preprocessor
 // limitation, the type used in ASSIGN_OR_RETURN cannot contain comma, so
 // wrap lhs in parentheses:
-//   ASSIGN_OR_RETURN((absl::flat_hash_map<Foo, Bar> my_map), GetMap());
+//   TFLITE_ASSIGN_OR_RETURN((absl::flat_hash_map<Foo, Bar> my_map), GetMap());
 // Or use auto if the type is obvious enough:
-//   ASSIGN_OR_RETURN(const auto& my_map, GetMapRef());
+//   TFLITE_ASSIGN_OR_RETURN(const auto& my_map, GetMapRef());
 //
 // Example: Assigning to structured bindings. The same situation with comma as
 // in map, so wrap the statement in parentheses.
-//   ASSIGN_OR_RETURN((const auto& [first, second]), GetPair());
+//   TFLITE_ASSIGN_OR_RETURN((const auto& [first, second]), GetPair());
 
 #if defined(_WIN32)
-#define ASSIGN_OR_RETURN(_1, _2, ...) TFLITE_ASSIGN_OR_RETURN_IMPL_2(_1, _2)
+#define TFLITE_ASSIGN_OR_RETURN(_1, _2, ...) TFLITE_ASSIGN_OR_RETURN_IMPL_2(_1, _2)
 #else
-#define ASSIGN_OR_RETURN(...)                                      \
+#define TFLITE_ASSIGN_OR_RETURN(...)                                      \
   TFLITE_STATUS_MACROS_IMPL_GET_VARIADIC_(                         \
       (__VA_ARGS__, TFLITE_STATUS_MACROS_IMPL_ASSIGN_OR_RETURN_3_, \
        TFLITE_STATUS_MACROS_IMPL_ASSIGN_OR_RETURN_2_))             \
@@ -203,7 +203,7 @@ constexpr bool TFLSHasPotentialConditionalOperator(const char* lhs, int index) {
 // because it thinks you might want the else to bind to the first if.  This
 // leads to problems with code like:
 //
-//   if (do_expr)  RETURN_IF_ERROR(expr) << "Some message";
+//   if (do_expr)  TFLITE_RETURN_IF_ERROR(expr) << "Some message";
 //
 // The "switch (0) case 0:" idiom is used to suppress this.
 #define TFLITE_STATUS_MACROS_IMPL_ELSE_BLOCKER_ \
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/port/default/tflite_wrapper.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/port/default/tflite_wrapper.cc
index 70fedca9a3f22..f579669e87e03 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/port/default/tflite_wrapper.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/port/default/tflite_wrapper.cc
@@ -82,7 +82,7 @@ absl::Status TfLiteInterpreterWrapper::InitializeWithFallback(
           const InterpreterCreationResources& resources,
           std::unique_ptr<tflite::Interpreter>* interpreter_out)
           -> absl::Status {
-        RETURN_IF_ERROR(interpreter_initializer(interpreter_out));
+        TFLITE_RETURN_IF_ERROR(interpreter_initializer(interpreter_out));
         if (*interpreter_out != nullptr &&
             resources.optional_delegate != nullptr) {
           TfLiteStatus status =
@@ -90,7 +90,7 @@ absl::Status TfLiteInterpreterWrapper::InitializeWithFallback(
                   ->ModifyGraphWithDelegate(resources.optional_delegate);
           if (status != kTfLiteOk) {
             *interpreter_out = nullptr;
-            RETURN_IF_ERROR(
+            TFLITE_RETURN_IF_ERROR(
                 absl::InvalidArgumentError("Applying delegate failed"));
           }
         }
@@ -112,7 +112,7 @@ absl::Status TfLiteInterpreterWrapper::InitializeWithFallback(
   interpreter_initializer_ = std::move(interpreter_initializer);
 
   // Sanity check and copy ComputeSettings.
-  RETURN_IF_ERROR(SanityCheckComputeSettings(compute_settings));
+  TFLITE_RETURN_IF_ERROR(SanityCheckComputeSettings(compute_settings));
   compute_settings_ = compute_settings;
   if (compute_settings_.has_settings_to_test_locally()) {
     flatbuffers::FlatBufferBuilder mini_benchmark_settings_fbb;
@@ -174,13 +174,13 @@ absl::Status TfLiteInterpreterWrapper::InitializeWithFallbackAndResize(
     delegate_.reset(nullptr);
   } else {
     // Initialize delegate and add it to 'resources'.
-    RETURN_IF_ERROR(InitializeDelegate());
+    TFLITE_RETURN_IF_ERROR(InitializeDelegate());
     resources.optional_delegate = delegate_.get();
   }
 
   absl::Status status = interpreter_initializer_(resources, &interpreter_);
   if (resources.optional_delegate == nullptr) {
-    RETURN_IF_ERROR(status);
+    TFLITE_RETURN_IF_ERROR(status);
   }
   if (resources.optional_delegate != nullptr && !status.ok()) {
     // Any error when constructing the interpreter is assumed to be a delegate
@@ -191,7 +191,7 @@ absl::Status TfLiteInterpreterWrapper::InitializeWithFallbackAndResize(
     if (fallback_on_compilation_error_) {
       InterpreterCreationResources fallback_resources{};
       fallback_resources.optional_delegate = nullptr;
-      RETURN_IF_ERROR(
+      TFLITE_RETURN_IF_ERROR(
           interpreter_initializer_(fallback_resources, &interpreter_));
     } else {
       // If instructed not to fallback, return error.
@@ -201,7 +201,7 @@ absl::Status TfLiteInterpreterWrapper::InitializeWithFallbackAndResize(
     }
   }
 
-  RETURN_IF_ERROR(resize(interpreter_.get()));
+  TFLITE_RETURN_IF_ERROR(resize(interpreter_.get()));
   if (compute_settings_.tflite_settings().cpu_settings().num_threads() != -1) {
     if (interpreter_->SetNumThreads(
             compute_settings_.tflite_settings().cpu_settings().num_threads()) !=
@@ -229,25 +229,25 @@ absl::Status TfLiteInterpreterWrapper::InitializeDelegate() {
         tflite::ConvertFromProto(compute_settings_, &flatbuffers_builder_);
 
     if (which_delegate == Delegate::NNAPI) {
-      RETURN_IF_ERROR(
+      TFLITE_RETURN_IF_ERROR(
           LoadDelegatePlugin("Nnapi", *compute_settings->tflite_settings()));
     } else if (which_delegate == Delegate::HEXAGON) {
-      RETURN_IF_ERROR(
+      TFLITE_RETURN_IF_ERROR(
           LoadDelegatePlugin("Hexagon", *compute_settings->tflite_settings()));
     } else if (which_delegate == Delegate::GPU) {
-      RETURN_IF_ERROR(
+      TFLITE_RETURN_IF_ERROR(
           LoadDelegatePlugin("Gpu", *compute_settings->tflite_settings()));
     } else if (which_delegate == Delegate::EDGETPU) {
-      RETURN_IF_ERROR(
+      TFLITE_RETURN_IF_ERROR(
           LoadDelegatePlugin("EdgeTpu", *compute_settings->tflite_settings()));
     } else if (which_delegate == Delegate::EDGETPU_CORAL) {
-      RETURN_IF_ERROR(LoadDelegatePlugin("EdgeTpuCoral",
+      TFLITE_RETURN_IF_ERROR(LoadDelegatePlugin("EdgeTpuCoral",
                                          *compute_settings->tflite_settings()));
     } else if (which_delegate == Delegate::XNNPACK) {
-      RETURN_IF_ERROR(
+      TFLITE_RETURN_IF_ERROR(
           LoadDelegatePlugin("XNNPack", *compute_settings->tflite_settings()));
     } else if (which_delegate == Delegate::CORE_ML) {
-      RETURN_IF_ERROR(
+      TFLITE_RETURN_IF_ERROR(
           LoadDelegatePlugin("CoreML", *compute_settings->tflite_settings()));
     }
   }
@@ -257,7 +257,7 @@ absl::Status TfLiteInterpreterWrapper::InitializeDelegate() {
 absl::Status TfLiteInterpreterWrapper::InvokeWithFallback(
     const std::function<absl::Status(tflite::Interpreter* interpreter)>&
         set_inputs) {
-  RETURN_IF_ERROR(set_inputs(interpreter_.get()));
+  TFLITE_RETURN_IF_ERROR(set_inputs(interpreter_.get()));
   if (cancel_flag_.Get()) {
     cancel_flag_.Set(false);
     return absl::CancelledError("cancelled before Invoke() was called");
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/audio_classifier.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/audio_classifier.cc
index 4b1439dcc0719..995ea7b101a7b 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/audio_classifier.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/audio_classifier.cc
@@ -77,16 +77,16 @@ CreatePostprocessor(TfLiteEngine* engine,
 StatusOr<std::unique_ptr<AudioClassifier>> AudioClassifier::CreateFromOptions(
     const AudioClassifierOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
   // Copy options to ensure the ExternalFile outlives the constructed object.
   auto options_copy = absl::make_unique<AudioClassifierOptions>(options);
 
-  ASSIGN_OR_RETURN(auto audio_classifier,
+  TFLITE_ASSIGN_OR_RETURN(auto audio_classifier,
                    TaskAPIFactory::CreateFromBaseOptions<AudioClassifier>(
                        &options_copy->base_options(), std::move(resolver)));
 
-  RETURN_IF_ERROR(audio_classifier->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(audio_classifier->Init(std::move(options_copy)));
 
   return audio_classifier;
 }
@@ -108,7 +108,7 @@ absl::Status AudioClassifier::Init(
   options_ = std::move(options);
 
   // Create preprocessor, assuming having only 1 input tensor.
-  ASSIGN_OR_RETURN(preprocessor_, processor::AudioPreprocessor::Create(
+  TFLITE_ASSIGN_OR_RETURN(preprocessor_, processor::AudioPreprocessor::Create(
                                       GetTfLiteEngine(), {0}));
 
   // Assuming all output tensors share the same option. This is an limitation in
@@ -117,7 +117,7 @@ absl::Status AudioClassifier::Init(
       GetTfLiteEngine()->OutputCount(GetTfLiteEngine()->interpreter());
   postprocessors_.reserve(output_count);
   for (int i = 0; i < output_count; i++) {
-    ASSIGN_OR_RETURN(auto processor, CreatePostprocessor(GetTfLiteEngine(), {i},
+    TFLITE_ASSIGN_OR_RETURN(auto processor, CreatePostprocessor(GetTfLiteEngine(), {i},
                                                          options_.get()));
     postprocessors_.emplace_back(std::move(processor));
   }
@@ -140,7 +140,7 @@ AudioClassifier::Postprocess(
     // ClassificationPostprocessor doesn't set head name for backward
     // compatibility, so we set it here manually.
     classification->set_head_name(processor->GetHeadName());
-    RETURN_IF_ERROR(processor->Postprocess(classification));
+    TFLITE_RETURN_IF_ERROR(processor->Postprocess(classification));
   }
 
   return result;
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/audio_embedder.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/audio_embedder.cc
index 56acada352121..6c07586fd0c25 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/audio_embedder.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/audio_embedder.cc
@@ -37,14 +37,14 @@ tflite::support::StatusOr<double> AudioEmbedder::CosineSimilarity(
 tflite::support::StatusOr<std::unique_ptr<AudioEmbedder>>
 AudioEmbedder::CreateFromOptions(const AudioEmbedderOptions& options,
                                  std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
   auto options_copy = absl::make_unique<AudioEmbedderOptions>(options);
 
-  ASSIGN_OR_RETURN(auto audio_embedder,
+  TFLITE_ASSIGN_OR_RETURN(auto audio_embedder,
                    core::TaskAPIFactory::CreateFromBaseOptions<AudioEmbedder>(
                        &options_copy->base_options(), std::move(resolver)));
 
-  RETURN_IF_ERROR(audio_embedder->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(audio_embedder->Init(std::move(options_copy)));
   return audio_embedder;
 }
 
@@ -65,7 +65,7 @@ absl::Status AudioEmbedder::Init(
   options_ = std::move(options);
 
   // Create preprocessor, assuming having only 1 input tensor.
-  ASSIGN_OR_RETURN(preprocessor_,
+  TFLITE_ASSIGN_OR_RETURN(preprocessor_,
                    tflite::task::processor::AudioPreprocessor::Create(
                        GetTfLiteEngine(), {0}));
 
@@ -95,7 +95,7 @@ absl::Status AudioEmbedder::Init(
           "number of output tensors.",
           support::TfLiteSupportStatus::kInvalidArgumentError);
     }
-    ASSIGN_OR_RETURN(auto processor,
+    TFLITE_ASSIGN_OR_RETURN(auto processor,
                      processor::EmbeddingPostprocessor::Create(
                          GetTfLiteEngine(), {i}, std::move(option)));
     postprocessors_.emplace_back(std::move(processor));
@@ -110,7 +110,7 @@ AudioEmbedder::Postprocess(
   tflite::task::processor::EmbeddingResult result;
   for (int i = 0; i < postprocessors_.size(); i++) {
     auto processor = postprocessors_.at(i).get();
-    RETURN_IF_ERROR(processor->Postprocess(result.add_embeddings()));
+    TFLITE_RETURN_IF_ERROR(processor->Postprocess(result.add_embeddings()));
   }
   return result;
 }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/audio_utils.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/audio_utils.cc
index c1eea28f730d8..9c3df0b501b8d 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/audio_utils.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/audio_utils.cc
@@ -28,7 +28,7 @@ tflite::support::StatusOr<AudioBuffer> LoadAudioBufferFromFile(
   uint16_t decoded_channel_count;
   uint32_t decoded_sample_rate;
 
-  RETURN_IF_ERROR(DecodeLin16WaveAsFloatVector(
+  TFLITE_RETURN_IF_ERROR(DecodeLin16WaveAsFloatVector(
       contents, wav_data, offset, &decoded_sample_count, &decoded_channel_count,
       &decoded_sample_rate));
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/wav_io.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/wav_io.cc
index 0671bb57b123e..fcda04f29b938 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/wav_io.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/wav_io.cc
@@ -88,7 +88,7 @@ absl::Status IncrementOffset(uint32_t old_offset, size_t increment,
 absl::Status ExpectText(const std::string& data,
                         const std::string& expected_text, uint32_t* offset) {
   uint32_t new_offset;
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       IncrementOffset(*offset, expected_text.size(), data.size(), &new_offset));
   const std::string found_text(data.begin() + *offset,
                                data.begin() + new_offset);
@@ -103,7 +103,7 @@ absl::Status ExpectText(const std::string& data,
 absl::Status ReadString(const std::string& data, size_t expected_length,
                         std::string* value, uint32_t* offset) {
   uint32_t new_offset;
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       IncrementOffset(*offset, expected_length, data.size(), &new_offset));
   *value = std::string(data.begin() + *offset, data.begin() + new_offset);
   *offset = new_offset;
@@ -116,42 +116,42 @@ absl::Status DecodeLin16WaveAsFloatVector(const std::string& wav_string,
                                           uint32_t* sample_count,
                                           uint16_t* channel_count,
                                           uint32_t* sample_rate) {
-  RETURN_IF_ERROR(ExpectText(wav_string, kRiffChunkId, offset));
+  TFLITE_RETURN_IF_ERROR(ExpectText(wav_string, kRiffChunkId, offset));
   uint32_t total_file_size;
-  RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, &total_file_size, offset));
-  RETURN_IF_ERROR(ExpectText(wav_string, kRiffType, offset));
-  RETURN_IF_ERROR(ExpectText(wav_string, kFormatChunkId, offset));
+  TFLITE_RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, &total_file_size, offset));
+  TFLITE_RETURN_IF_ERROR(ExpectText(wav_string, kRiffType, offset));
+  TFLITE_RETURN_IF_ERROR(ExpectText(wav_string, kFormatChunkId, offset));
   uint32_t format_chunk_size;
-  RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, &format_chunk_size, offset));
+  TFLITE_RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, &format_chunk_size, offset));
   if ((format_chunk_size != 16) && (format_chunk_size != 18)) {
     return absl::InvalidArgumentError(absl::StrFormat(
         "Bad format chunk size for WAV: Expected 16 or 18, but got %" PRIu32,
         format_chunk_size));
   }
   uint16_t audio_format;
-  RETURN_IF_ERROR(ReadValue<uint16_t>(wav_string, &audio_format, offset));
+  TFLITE_RETURN_IF_ERROR(ReadValue<uint16_t>(wav_string, &audio_format, offset));
   if (audio_format != 1) {
     return absl::InvalidArgumentError(absl::StrFormat(
         "Bad audio format for WAV: Expected 1 (PCM), but got %" PRIu16,
         audio_format));
   }
-  RETURN_IF_ERROR(ReadValue<uint16_t>(wav_string, channel_count, offset));
+  TFLITE_RETURN_IF_ERROR(ReadValue<uint16_t>(wav_string, channel_count, offset));
   if (*channel_count < 1) {
     return absl::InvalidArgumentError(absl::StrFormat(
         "Bad number of channels for WAV: Expected at least 1, but got %" PRIu16,
         *channel_count));
   }
-  RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, sample_rate, offset));
+  TFLITE_RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, sample_rate, offset));
   uint32_t bytes_per_second;
-  RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, &bytes_per_second, offset));
+  TFLITE_RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, &bytes_per_second, offset));
   uint16_t bytes_per_sample;
-  RETURN_IF_ERROR(ReadValue<uint16_t>(wav_string, &bytes_per_sample, offset));
+  TFLITE_RETURN_IF_ERROR(ReadValue<uint16_t>(wav_string, &bytes_per_sample, offset));
   // Confusingly, bits per sample is defined as holding the number of bits for
   // one channel, unlike the definition of sample used elsewhere in the WAV
   // spec. For example, bytes per sample is the memory needed for all channels
   // for one point in time.
   uint16_t bits_per_sample;
-  RETURN_IF_ERROR(ReadValue<uint16_t>(wav_string, &bits_per_sample, offset));
+  TFLITE_RETURN_IF_ERROR(ReadValue<uint16_t>(wav_string, &bits_per_sample, offset));
   if (bits_per_sample != 16) {
     return absl::InvalidArgumentError(
         absl::StrFormat("Can only read 16-bit WAV files, but received %" PRIu16,
@@ -182,9 +182,9 @@ absl::Status DecodeLin16WaveAsFloatVector(const std::string& wav_string,
   bool was_data_found = false;
   while (*offset < wav_string.size()) {
     std::string chunk_id;
-    RETURN_IF_ERROR(ReadString(wav_string, 4, &chunk_id, offset));
+    TFLITE_RETURN_IF_ERROR(ReadString(wav_string, 4, &chunk_id, offset));
     uint32_t chunk_size;
-    RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, &chunk_size, offset));
+    TFLITE_RETURN_IF_ERROR(ReadValue<uint32_t>(wav_string, &chunk_size, offset));
     if (chunk_size > std::numeric_limits<int32_t>::max()) {
       return absl::InvalidArgumentError(absl::StrFormat(
           "WAV data chunk '%s' is too large: %" PRIu32
@@ -202,12 +202,12 @@ absl::Status DecodeLin16WaveAsFloatVector(const std::string& wav_string,
       uint32_t unused_new_offset = 0;
       // Validate that the data exists before allocating space for it
       // (prevent easy OOM errors).
-      RETURN_IF_ERROR(IncrementOffset(*offset, sizeof(int16_t) * data_count,
+      TFLITE_RETURN_IF_ERROR(IncrementOffset(*offset, sizeof(int16_t) * data_count,
                                       wav_string.size(), &unused_new_offset));
       float_values->resize(data_count);
       for (int i = 0; i < data_count; ++i) {
         int16_t single_channel_value = 0;
-        RETURN_IF_ERROR(
+        TFLITE_RETURN_IF_ERROR(
             ReadValue<int16_t>(wav_string, &single_channel_value, offset));
         (*float_values)[i] = Int16SampleToFloat(single_channel_value);
       }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/wav_io.h b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/wav_io.h
index fd3b779613f3d..07cb45ba39c1f 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/wav_io.h
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/audio/utils/wav_io.h
@@ -74,7 +74,7 @@ absl::Status IncrementOffset(uint32_t old_offset, size_t increment,
 template <class T>
 absl::Status ReadValue(const std::string& data, T* value, uint32_t* offset) {
   uint32_t new_offset;
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       IncrementOffset(*offset, sizeof(T), data.size(), &new_offset));
   if (port::kLittleEndian) {
     memcpy(value, data.data() + *offset, sizeof(T));
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/base_task_api.h b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/base_task_api.h
index d743383734b42..e29cef20e0f43 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/base_task_api.h
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/base_task_api.h
@@ -123,7 +123,7 @@ class BaseTaskApi : public BaseUntypedTaskApi {
         GetTfLiteEngine()->interpreter_wrapper();
     // Note: AllocateTensors() is already performed by the interpreter wrapper
     // at InitInterpreter time (see TfLiteEngine).
-    RETURN_IF_ERROR(Preprocess(GetInputTensors(), args...));
+    TFLITE_RETURN_IF_ERROR(Preprocess(GetInputTensors(), args...));
     absl::Status status = interpreter_wrapper->InvokeWithoutFallback();
     if (!status.ok()) {
       return status.GetPayload(tflite::support::kTfLiteSupportPayload)
@@ -143,7 +143,7 @@ class BaseTaskApi : public BaseUntypedTaskApi {
         GetTfLiteEngine()->interpreter_wrapper();
     // Note: AllocateTensors() is already performed by the interpreter wrapper
     // at InitInterpreter time (see TfLiteEngine).
-    RETURN_IF_ERROR(Preprocess(GetInputTensors(), args...));
+    TFLITE_RETURN_IF_ERROR(Preprocess(GetInputTensors(), args...));
     auto set_inputs_nop =
         [](tflite::task::core::TfLiteEngine::Interpreter* interpreter)
         -> absl::Status {
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/classification_head.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/classification_head.cc
index fe2217620be1a..1945f0172099f 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/classification_head.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/classification_head.cc
@@ -44,7 +44,7 @@ StatusOr<ClassificationHead> BuildClassificationHead(
           output_tensor_metadata,
           tflite::AssociatedFileType_TENSOR_AXIS_LABELS);
   if (!labels_filename.empty()) {
-    ASSIGN_OR_RETURN(absl::string_view labels_file,
+    TFLITE_ASSIGN_OR_RETURN(absl::string_view labels_file,
                      metadata_extractor.GetAssociatedFile(labels_filename));
     const std::string display_names_filename =
         ModelMetadataExtractor::FindFirstAssociatedFileName(
@@ -53,15 +53,15 @@ StatusOr<ClassificationHead> BuildClassificationHead(
             display_names_locale);
     absl::string_view display_names_file;
     if (!display_names_filename.empty()) {
-      ASSIGN_OR_RETURN(display_names_file, metadata_extractor.GetAssociatedFile(
+      TFLITE_ASSIGN_OR_RETURN(display_names_file, metadata_extractor.GetAssociatedFile(
                                                display_names_filename));
     }
-    ASSIGN_OR_RETURN(head.label_map_items,
+    TFLITE_ASSIGN_OR_RETURN(head.label_map_items,
                      BuildLabelMapFromFiles(labels_file, display_names_file));
   }
 
   // Set score threshold, if present.
-  ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_thresholding_process_unit,
+  TFLITE_ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_thresholding_process_unit,
                    ModelMetadataExtractor::FindFirstProcessUnit(
                        output_tensor_metadata,
                        tflite::ProcessUnitOptions_ScoreThresholdingOptions));
@@ -72,7 +72,7 @@ StatusOr<ClassificationHead> BuildClassificationHead(
   }
 
   // Build score calibration parameters, if present.
-  ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_calibration_process_unit,
+  TFLITE_ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_calibration_process_unit,
                    ModelMetadataExtractor::FindFirstProcessUnit(
                        output_tensor_metadata,
                        tflite::ProcessUnitOptions_ScoreCalibrationOptions));
@@ -95,10 +95,10 @@ StatusOr<ClassificationHead> BuildClassificationHead(
           "parameters file with type TENSOR_AXIS_SCORE_CALIBRATION.",
           TfLiteSupportStatus::kMetadataAssociatedFileNotFoundError);
     }
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         absl::string_view score_calibration_file,
         metadata_extractor.GetAssociatedFile(score_calibration_filename));
-    ASSIGN_OR_RETURN(SigmoidCalibrationParameters sigmoid_params,
+    TFLITE_ASSIGN_OR_RETURN(SigmoidCalibrationParameters sigmoid_params,
                      BuildSigmoidCalibrationParams(
                          *score_calibration_process_unit
                               ->options_as_ScoreCalibrationOptions(),
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/external_file_handler.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/external_file_handler.cc
index 680e65de03403..f969f4dcc05ab 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/external_file_handler.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/external_file_handler.cc
@@ -77,7 +77,7 @@ ExternalFileHandler::CreateFromExternalFile(const ExternalFile* external_file) {
   std::unique_ptr<ExternalFileHandler> handler =
       absl::WrapUnique(new ExternalFileHandler(external_file));
 
-  RETURN_IF_ERROR(handler->MapExternalFile());
+  TFLITE_RETURN_IF_ERROR(handler->MapExternalFile());
 
   return handler;
 }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/score_calibration.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/score_calibration.cc
index 818839a77e43d..a7080f25780e8 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/score_calibration.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/score_calibration.cc
@@ -211,7 +211,7 @@ StatusOr<SigmoidCalibrationParameters> BuildSigmoidCalibrationParams(
     if (lines[i].empty()) {
       continue;
     }
-    ASSIGN_OR_RETURN(Sigmoid sigmoid, SigmoidFromLabelAndLine(
+    TFLITE_ASSIGN_OR_RETURN(Sigmoid sigmoid, SigmoidFromLabelAndLine(
                                           label_map_items[i].name, lines[i]));
     sigmoid_vector.emplace_back(std::move(sigmoid));
   }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_api_factory.h b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_api_factory.h
index 11e0d1be54ea7..17d8d57468670 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_api_factory.h
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_api_factory.h
@@ -56,7 +56,7 @@ class TaskAPIFactory {
       const tflite::proto::ComputeSettings& compute_settings =
           tflite::proto::ComputeSettings()) {
     auto engine = absl::make_unique<TfLiteEngine>(std::move(resolver));
-    RETURN_IF_ERROR(engine->BuildModelFromFlatBuffer(buffer_data, buffer_size,
+    TFLITE_RETURN_IF_ERROR(engine->BuildModelFromFlatBuffer(buffer_data, buffer_size,
                                                      compute_settings));
     return CreateFromTfLiteEngine<T>(std::move(engine), num_threads,
                                      compute_settings);
@@ -74,7 +74,7 @@ class TaskAPIFactory {
       const tflite::proto::ComputeSettings& compute_settings =
           tflite::proto::ComputeSettings()) {
     auto engine = absl::make_unique<TfLiteEngine>(std::move(resolver));
-    RETURN_IF_ERROR(engine->BuildModelFromFile(file_name, compute_settings));
+    TFLITE_RETURN_IF_ERROR(engine->BuildModelFromFile(file_name, compute_settings));
     return CreateFromTfLiteEngine<T>(std::move(engine), num_threads,
                                      compute_settings);
   }
@@ -91,7 +91,7 @@ class TaskAPIFactory {
       const tflite::proto::ComputeSettings& compute_settings =
           tflite::proto::ComputeSettings()) {
     auto engine = absl::make_unique<TfLiteEngine>(std::move(resolver));
-    RETURN_IF_ERROR(engine->BuildModelFromFileDescriptor(file_descriptor,
+    TFLITE_RETURN_IF_ERROR(engine->BuildModelFromFileDescriptor(file_descriptor,
                                                          compute_settings));
     return CreateFromTfLiteEngine<T>(std::move(engine), num_threads,
                                      compute_settings);
@@ -110,7 +110,7 @@ class TaskAPIFactory {
           const tflite::proto::ComputeSettings& compute_settings =
               tflite::proto::ComputeSettings()) {
     auto engine = absl::make_unique<TfLiteEngine>(std::move(resolver));
-    RETURN_IF_ERROR(engine->BuildModelFromExternalFileProto(external_file,
+    TFLITE_RETURN_IF_ERROR(engine->BuildModelFromExternalFileProto(external_file,
                                                             compute_settings));
     return CreateFromTfLiteEngine<T>(std::move(engine), num_threads,
                                      compute_settings);
@@ -146,10 +146,10 @@ class TaskAPIFactory {
     tflite::proto::ComputeSettings compute_settings(
         base_options->compute_settings());
     if (compute_settings.has_settings_to_test_locally()) {
-      RETURN_IF_ERROR(SetMiniBenchmarkFileNameFromBaseOptions(compute_settings,
+      TFLITE_RETURN_IF_ERROR(SetMiniBenchmarkFileNameFromBaseOptions(compute_settings,
                                                               base_options));
     }
-    RETURN_IF_ERROR(engine->BuildModelFromExternalFileProto(
+    TFLITE_RETURN_IF_ERROR(engine->BuildModelFromExternalFileProto(
         &base_options->model_file(), compute_settings));
     return CreateFromTfLiteEngine<T>(std::move(engine), compute_settings);
   }
@@ -173,7 +173,7 @@ class TaskAPIFactory {
       std::unique_ptr<TfLiteEngine> engine,
       const tflite::proto::ComputeSettings& compute_settings =
           tflite::proto::ComputeSettings()) {
-    RETURN_IF_ERROR(engine->InitInterpreter(compute_settings));
+    TFLITE_RETURN_IF_ERROR(engine->InitInterpreter(compute_settings));
     return absl::make_unique<T>(std::move(engine));
   }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_utils.h b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_utils.h
index 08b79b8dba5f2..a722c091651fc 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_utils.h
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_utils.h
@@ -71,7 +71,7 @@ template <typename T, typename = std::enable_if_t<
 inline absl::Status PopulateTensor(const T* data, int num_elements,
                                    TfLiteTensor* tensor) {
   T* v;
-  ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<T>(tensor));
+  TFLITE_ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<T>(tensor));
   size_t bytes = num_elements * sizeof(T);
   if (tensor->bytes != bytes) {
     return tflite::support::CreateStatusWithPayload(
@@ -113,7 +113,7 @@ inline absl::Status PopulateTensor<std::string>(
 template <typename T>
 inline absl::Status PopulateTensor(const T& data, TfLiteTensor* tensor) {
   T* v;
-  ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<T>(tensor));
+  TFLITE_ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<T>(tensor));
   *v = data;
   return absl::OkStatus();
 }
@@ -133,7 +133,7 @@ template <typename T>
 inline absl::Status PopulateVector(const TfLiteTensor* tensor,
                                    std::vector<T>* data) {
   const T* v;
-  ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<T>(tensor));
+  TFLITE_ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<T>(tensor));
   size_t num = tensor->bytes / sizeof(tensor->type);
   data->reserve(num);
   for (size_t i = 0; i < num; i++) {
@@ -146,7 +146,7 @@ template <>
 inline absl::Status PopulateVector<std::string>(
     const TfLiteTensor* tensor, std::vector<std::string>* data) {
   std::string* v;
-  ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<std::string>(tensor));
+  TFLITE_ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<std::string>(tensor));
   (void)v;
   int num = GetStringCount(tensor);
   data->reserve(num);
@@ -166,7 +166,7 @@ template <
 inline absl::Status PopulateVectorToRepeated(const TfLiteTensor* tensor,
                                              TRepeatedField* data) {
   const T* v;
-  ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<T>(tensor));
+  TFLITE_ASSIGN_OR_RETURN(v, AssertAndReturnTypedTensor<T>(tensor));
   size_t num = tensor->bytes / sizeof(tensor->type);
   data->Resize(num, T());
   T* pdata = data->mutable_data();
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/tflite_engine.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/tflite_engine.cc
index 0b9af59afdc79..44421ea1df463 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/tflite_engine.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/tflite_engine.cc
@@ -111,7 +111,7 @@ absl::Status TfLiteEngine::InitializeFromModelFileHandler(
     }
   }
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       model_metadata_extractor_,
       tflite::metadata::ModelMetadataExtractor::CreateFromModelBuffer(
           buffer_data, buffer_size));
@@ -128,7 +128,7 @@ absl::Status TfLiteEngine::BuildModelFromFlatBuffer(
   }
   external_file_ = std::make_unique<ExternalFile>();
   external_file_->set_file_content(std::string(buffer_data, buffer_size));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       model_file_handler_,
       ExternalFileHandler::CreateFromExternalFile(external_file_.get()));
   return InitializeFromModelFileHandler(compute_settings);
@@ -145,7 +145,7 @@ absl::Status TfLiteEngine::BuildModelFromFile(
     external_file_ = std::make_unique<ExternalFile>();
   }
   external_file_->set_file_name(file_name);
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       model_file_handler_,
       ExternalFileHandler::CreateFromExternalFile(external_file_.get()));
   return InitializeFromModelFileHandler(compute_settings);
@@ -162,7 +162,7 @@ absl::Status TfLiteEngine::BuildModelFromFileDescriptor(
     external_file_ = std::make_unique<ExternalFile>();
   }
   external_file_->mutable_file_descriptor_meta()->set_fd(file_descriptor);
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       model_file_handler_,
       ExternalFileHandler::CreateFromExternalFile(external_file_.get()));
   return InitializeFromModelFileHandler(compute_settings);
@@ -175,7 +175,7 @@ absl::Status TfLiteEngine::BuildModelFromExternalFileProto(
     return CreateStatusWithPayload(StatusCode::kInternal,
                                    "Model already built");
   }
-  ASSIGN_OR_RETURN(model_file_handler_,
+  TFLITE_ASSIGN_OR_RETURN(model_file_handler_,
                    ExternalFileHandler::CreateFromExternalFile(external_file));
   return InitializeFromModelFileHandler(compute_settings);
 }
@@ -187,7 +187,7 @@ absl::Status TfLiteEngine::BuildModelFromExternalFileProto(
                                    "Model already built");
   }
   external_file_ = std::move(external_file);
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       model_file_handler_,
       ExternalFileHandler::CreateFromExternalFile(external_file_.get()));
   // Dummy proto. InitializeFromModelFileHandler doesn't use this proto.
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/audio_preprocessor.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/audio_preprocessor.cc
index e3ea2b134e3f4..4eaee87081750 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/audio_preprocessor.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/audio_preprocessor.cc
@@ -74,22 +74,22 @@ tflite::support::StatusOr<const AudioProperties*> GetAudioPropertiesSafe(
 tflite::support::StatusOr<std::unique_ptr<AudioPreprocessor>>
 AudioPreprocessor::Create(tflite::task::core::TfLiteEngine* engine,
                           const std::initializer_list<int> input_indices) {
-  ASSIGN_OR_RETURN(auto processor,
+  TFLITE_ASSIGN_OR_RETURN(auto processor,
                    Processor::Create<AudioPreprocessor>(
                        /* num_expected_tensors = */ 1, engine, input_indices));
 
-  RETURN_IF_ERROR(processor->Init());
+  TFLITE_RETURN_IF_ERROR(processor->Init());
   return processor;
 }
 
 absl::Status AudioPreprocessor::Init() {
-  RETURN_IF_ERROR(SetAudioFormatFromMetadata());
-  RETURN_IF_ERROR(CheckAndSetInputs());
+  TFLITE_RETURN_IF_ERROR(SetAudioFormatFromMetadata());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetInputs());
   return absl::OkStatus();
 }
 
 absl::Status AudioPreprocessor::SetAudioFormatFromMetadata() {
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       const AudioProperties* props,
       GetAudioPropertiesSafe(GetTensorMetadata(), tensor_indices_.at(0)));
   audio_format_.channels = props->channels();
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/bert_preprocessor.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/bert_preprocessor.cc
index 76a7a534a27bd..62d5382fe5a17 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/bert_preprocessor.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/bert_preprocessor.cc
@@ -44,11 +44,11 @@ constexpr char kSeparator[] = "[SEP]";
 StatusOr<std::unique_ptr<BertPreprocessor>> BertPreprocessor::Create(
     tflite::task::core::TfLiteEngine* engine,
     const std::initializer_list<int> input_tensor_indices) {
-  ASSIGN_OR_RETURN(auto processor, Processor::Create<BertPreprocessor>(
+  TFLITE_ASSIGN_OR_RETURN(auto processor, Processor::Create<BertPreprocessor>(
                                        /* num_expected_tensors = */ 3, engine,
                                        input_tensor_indices,
                                        /* requires_metadata = */ false));
-  RETURN_IF_ERROR(processor->Init());
+  TFLITE_RETURN_IF_ERROR(processor->Init());
   return processor;
 }
 
@@ -58,7 +58,7 @@ absl::Status BertPreprocessor::Init() {
   // BertTokenizer is packed in the processing unit SubgraphMetadata.
   const tflite::ProcessUnit* tokenizer_metadata =
       GetMetadataExtractor()->GetInputProcessUnit(kTokenizerProcessUnitIndex);
-  ASSIGN_OR_RETURN(tokenizer_, CreateTokenizerFromProcessUnit(
+  TFLITE_ASSIGN_OR_RETURN(tokenizer_, CreateTokenizerFromProcessUnit(
                                    tokenizer_metadata, GetMetadataExtractor()));
 
   const auto& ids_tensor = *GetTensor(kIdsTensorIndex);
@@ -178,9 +178,9 @@ absl::Status BertPreprocessor::Preprocess(const std::string& input_text) {
   // input_masks                 1    1   1...  1    1    0  0...  0
   // segment_ids                 0    0   0...  0    0    0  0...  0
 
-  RETURN_IF_ERROR(PopulateTensor(input_ids, ids_tensor));
-  RETURN_IF_ERROR(PopulateTensor(input_mask, mask_tensor));
-  RETURN_IF_ERROR(PopulateTensor(std::vector<int>(input_tensor_length, 0),
+  TFLITE_RETURN_IF_ERROR(PopulateTensor(input_ids, ids_tensor));
+  TFLITE_RETURN_IF_ERROR(PopulateTensor(input_mask, mask_tensor));
+  TFLITE_RETURN_IF_ERROR(PopulateTensor(std::vector<int>(input_tensor_length, 0),
                                  segment_ids_tensor));
   return absl::OkStatus();
 }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/classification_postprocessor.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/classification_postprocessor.cc
index 9c11083c4f839..393992056faad 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/classification_postprocessor.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/classification_postprocessor.cc
@@ -44,11 +44,11 @@ tflite::support::StatusOr<std::unique_ptr<ClassificationPostprocessor>>
 ClassificationPostprocessor::Create(
     core::TfLiteEngine* engine, const std::initializer_list<int> output_indices,
     std::unique_ptr<ClassificationOptions> options) {
-  ASSIGN_OR_RETURN(auto processor,
+  TFLITE_ASSIGN_OR_RETURN(auto processor,
                    Processor::Create<ClassificationPostprocessor>(
                        /* num_expected_tensors = */ 1, engine, output_indices));
 
-  RETURN_IF_ERROR(processor->Init(std::move(options)));
+  TFLITE_RETURN_IF_ERROR(processor->Init(std::move(options)));
   return processor;
 }
 
@@ -70,7 +70,7 @@ absl::Status ClassificationPostprocessor::Init(
         TfLiteSupportStatus::kInvalidArgumentError);
   }
 
-  ASSIGN_OR_RETURN(classification_head_,
+  TFLITE_ASSIGN_OR_RETURN(classification_head_,
                    BuildClassificationHead(*engine_->metadata_extractor(),
                                            *GetTensorMetadata(),
                                            options->display_names_locale()));
@@ -199,7 +199,7 @@ absl::Status ClassificationPostprocessor::Init(
           StatusCode::kInternal, "Could not create score calibration object.");
     }
 
-    RETURN_IF_ERROR(score_calibration_->InitializeFromParameters(
+    TFLITE_RETURN_IF_ERROR(score_calibration_->InitializeFromParameters(
         classification_head_.calibration_params.value()));
   }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/classification_postprocessor.h b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/classification_postprocessor.h
index 517974c7370ea..c51812472c9c8 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/classification_postprocessor.h
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/classification_postprocessor.h
@@ -107,7 +107,7 @@ absl::Status ClassificationPostprocessor::Postprocess(T* classifications) {
 
   const TfLiteTensor* output_tensor = GetTensor();
   if (output_tensor->type == kTfLiteUInt8) {
-    ASSIGN_OR_RETURN(const uint8* output_data,
+    TFLITE_ASSIGN_OR_RETURN(const uint8* output_data,
                      core::AssertAndReturnTypedTensor<uint8>(output_tensor));
     for (int j = 0; j < head.label_map_items.size(); ++j) {
       score_pairs.emplace_back(
@@ -115,7 +115,7 @@ absl::Status ClassificationPostprocessor::Postprocess(T* classifications) {
                                             output_tensor->params.zero_point));
     }
   } else {
-    ASSIGN_OR_RETURN(const float* output_data,
+    TFLITE_ASSIGN_OR_RETURN(const float* output_data,
                      core::AssertAndReturnTypedTensor<float>(output_tensor));
     for (int j = 0; j < head.label_map_items.size(); ++j) {
       score_pairs.emplace_back(j, output_data[j]);
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/embedding_postprocessor.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/embedding_postprocessor.cc
index 83b123fd5c873..8e4ad06902da8 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/embedding_postprocessor.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/embedding_postprocessor.cc
@@ -24,12 +24,12 @@ tflite::support::StatusOr<std::unique_ptr<EmbeddingPostprocessor>>
 EmbeddingPostprocessor::Create(core::TfLiteEngine* engine,
                                const std::initializer_list<int> output_indices,
                                std::unique_ptr<EmbeddingOptions> options) {
-  ASSIGN_OR_RETURN(auto processor,
+  TFLITE_ASSIGN_OR_RETURN(auto processor,
                    Processor::Create<EmbeddingPostprocessor>(
                        /* num_expected_tensors = */ 1, engine, output_indices,
                        /* requires_metadata = */ false));
 
-  RETURN_IF_ERROR(processor->Init(std::move(options)));
+  TFLITE_RETURN_IF_ERROR(processor->Init(std::move(options)));
   return processor;
 }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/embedding_searcher.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/embedding_searcher.cc
index 274d6ae8658b5..c9de0bcfaa990 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/embedding_searcher.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/embedding_searcher.cc
@@ -176,7 +176,7 @@ StatusOr<std::unique_ptr<EmbeddingSearcher>> EmbeddingSearcher::Create(
     std::optional<absl::string_view> optional_index_file_content) {
   auto embedding_searcher = std::make_unique<EmbeddingSearcher>();
 
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       embedding_searcher->Init(
           std::move(search_options), optional_index_file_content));
   return embedding_searcher;
@@ -185,7 +185,7 @@ StatusOr<std::unique_ptr<EmbeddingSearcher>> EmbeddingSearcher::Create(
 StatusOr<SearchResult> EmbeddingSearcher::Search(const Embedding& embedding) {
   // Convert embedding to Eigen matrix, as expected by ScaNN.
   Eigen::MatrixXf query;
-  RETURN_IF_ERROR(ConvertEmbeddingToEigenMatrix(embedding, &query));
+  TFLITE_RETURN_IF_ERROR(ConvertEmbeddingToEigenMatrix(embedding, &query));
 
   // Identify partitions to search.
   std::vector<std::vector<int>> leaves_to_search(
@@ -203,10 +203,10 @@ StatusOr<SearchResult> EmbeddingSearcher::Search(const Embedding& embedding) {
       std::make_pair(std::numeric_limits<float>::max(), kNoNeighborId));
   // Perform search.
   if (quantizer_) {
-    RETURN_IF_ERROR(
+    TFLITE_RETURN_IF_ERROR(
         QuantizedSearch(query, leaves_to_search[0], absl::MakeSpan(top_n)));
   } else {
-    RETURN_IF_ERROR(
+    TFLITE_RETURN_IF_ERROR(
         LinearSearch(query, leaves_to_search[0], absl::MakeSpan(top_n)));
   }
 
@@ -216,7 +216,7 @@ StatusOr<SearchResult> EmbeddingSearcher::Search(const Embedding& embedding) {
     if (id == kNoNeighborId) {
       break;
     }
-    ASSIGN_OR_RETURN(auto metadata, index_->GetMetadataAtIndex(id));
+    TFLITE_ASSIGN_OR_RETURN(auto metadata, index_->GetMetadataAtIndex(id));
     NearestNeighbor* nearest_neighbor = search_result.add_nearest_neighbors();
     nearest_neighbor->set_distance(distance);
     nearest_neighbor->set_metadata(std::string(metadata));
@@ -231,13 +231,13 @@ StatusOr<absl::string_view> EmbeddingSearcher::GetUserInfo() {
 absl::Status EmbeddingSearcher::Init(
     std::unique_ptr<SearchOptions> options,
     std::optional<absl::string_view> optional_index_file_content) {
-  RETURN_IF_ERROR(SanityCheckOptions(*options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(*options));
   options_ = std::move(options);
 
   // Initialize index.
   absl::string_view index_file_content;
   if (options_->has_index_file()) {
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         index_file_handler_,
         ExternalFileHandler::CreateFromExternalFile(&options_->index_file()));
     index_file_content = index_file_handler_->GetFileContent();
@@ -251,13 +251,13 @@ absl::Status EmbeddingSearcher::Init(
     }
     index_file_content = *optional_index_file_content;
   }
-  ASSIGN_OR_RETURN(index_,
+  TFLITE_ASSIGN_OR_RETURN(index_,
                    Index::CreateFromIndexBuffer(index_file_content.data(),
                                                 index_file_content.size()));
-  ASSIGN_OR_RETURN(index_config_, index_->GetIndexConfig());
-  RETURN_IF_ERROR(SanityCheckIndexConfig(index_config_));
+  TFLITE_ASSIGN_OR_RETURN(index_config_, index_->GetIndexConfig());
+  TFLITE_RETURN_IF_ERROR(SanityCheckIndexConfig(index_config_));
   // Get distance measure once and for all.
-  ASSIGN_OR_RETURN(distance_measure_,
+  TFLITE_ASSIGN_OR_RETURN(distance_measure_,
                    GetDistanceMeasure(index_config_.scann_config()));
 
   // Initialize partitioner.
@@ -296,7 +296,7 @@ absl::Status EmbeddingSearcher::QuantizedSearch(
   }
   for (int leaf_id : leaves_to_search) {
     // Load partition into Eigen matrix.
-    ASSIGN_OR_RETURN(auto partition, index_->GetPartitionAtIndex(leaf_id));
+    TFLITE_ASSIGN_OR_RETURN(auto partition, index_->GetPartitionAtIndex(leaf_id));
     int partition_size = partition.size() / dim;
     Eigen::Map<const Matrix8u> database(
         reinterpret_cast<const uint8_t*>(partition.data()), dim,
@@ -319,7 +319,7 @@ absl::Status EmbeddingSearcher::LinearSearch(Eigen::Ref<Eigen::MatrixXf> query,
   int dim = index_config_.embedding_dim();
   for (int leaf_id : leaves_to_search) {
     // Load partition into Eigen matrix.
-    ASSIGN_OR_RETURN(auto partition, index_->GetPartitionAtIndex(leaf_id));
+    TFLITE_ASSIGN_OR_RETURN(auto partition, index_->GetPartitionAtIndex(leaf_id));
     int partition_size = partition.size() / (dim * sizeof(float));
     Eigen::Map<const Eigen::MatrixXf> database(
         reinterpret_cast<const float*>(partition.data()), dim, partition_size);
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/image_preprocessor.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/image_preprocessor.cc
index 7ad4ad4703789..05a6df3f1a380 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/image_preprocessor.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/image_preprocessor.cc
@@ -38,12 +38,12 @@ tflite::support::StatusOr<std::unique_ptr<ImagePreprocessor>>
 ImagePreprocessor::Create(
     core::TfLiteEngine* engine, const std::initializer_list<int> input_indices,
     const vision::FrameBufferUtils::ProcessEngine& process_engine) {
-  ASSIGN_OR_RETURN(auto processor,
+  TFLITE_ASSIGN_OR_RETURN(auto processor,
                    Processor::Create<ImagePreprocessor>(
                        /* num_expected_tensors = */ 1, engine, input_indices,
                        /* requires_metadata = */ false));
 
-  RETURN_IF_ERROR(processor->Init(process_engine));
+  TFLITE_RETURN_IF_ERROR(processor->Init(process_engine));
   return processor;
 }
 
@@ -72,7 +72,7 @@ absl::Status ImagePreprocessor::Init(
     const vision::FrameBufferUtils::ProcessEngine& process_engine) {
   frame_buffer_utils_ = vision::FrameBufferUtils::Create(process_engine);
 
-  ASSIGN_OR_RETURN(input_specs_, vision::BuildInputImageTensorSpecs(
+  TFLITE_ASSIGN_OR_RETURN(input_specs_, vision::BuildInputImageTensorSpecs(
                                      *engine_->interpreter(),
                                      *engine_->metadata_extractor()));
 
@@ -137,7 +137,7 @@ absl::Status ImagePreprocessor::Preprocess(const FrameBuffer& frame_buffer,
         {preprocessed_plane}, to_buffer_dimension, FrameBuffer::Format::kRGB,
         FrameBuffer::Orientation::kTopLeft);
 
-    RETURN_IF_ERROR(frame_buffer_utils_->Preprocess(
+    TFLITE_RETURN_IF_ERROR(frame_buffer_utils_->Preprocess(
         frame_buffer, roi, preprocessed_frame_buffer.get()));
   } else {
     // Input frame buffer already targets model requirements: skip image
@@ -165,7 +165,7 @@ absl::Status ImagePreprocessor::Preprocess(const FrameBuffer& frame_buffer,
             "and input tensor.");
       }
       // No normalization required: directly populate data.
-      RETURN_IF_ERROR(tflite::task::core::PopulateTensor(
+      TFLITE_RETURN_IF_ERROR(tflite::task::core::PopulateTensor(
           input_data, input_data_byte_size / sizeof(uint8), GetTensor()));
       break;
     case kTfLiteFloat32: {
@@ -177,7 +177,7 @@ absl::Status ImagePreprocessor::Preprocess(const FrameBuffer& frame_buffer,
             "and input tensor.");
       }
       // Normalize and populate.
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           float* normalized_input_data,
           tflite::task::core::AssertAndReturnTypedTensor<float>(GetTensor()));
       const tflite::task::vision::NormalizationOptions& normalization_options =
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/processor.h b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/processor.h
index e7417ba65bf09..7f76bec5c0f18 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/processor.h
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/processor.h
@@ -56,7 +56,7 @@ class Processor {
       const std::initializer_list<int> tensor_indices,
       bool requires_metadata = true) {
     auto processor = absl::make_unique<T>(engine, tensor_indices);
-    RETURN_IF_ERROR(
+    TFLITE_RETURN_IF_ERROR(
         processor->SanityCheck(num_expected_tensors, requires_metadata));
     return processor;
   }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/regex_preprocessor.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/regex_preprocessor.cc
index af923b4d6f2c1..758514ca3ed6e 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/regex_preprocessor.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/regex_preprocessor.cc
@@ -45,7 +45,7 @@ StatusOr<absl::string_view> CheckAndLoadFirstAssociatedFile(
         "Invalid vocab_file from input process unit.",
         TfLiteSupportStatus::kMetadataInvalidTokenizerError);
   }
-  ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
+  TFLITE_ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
                    metadata_extractor->GetAssociatedFile(
                        associated_files->Get(0)->name()->str()));
   return vocab_buffer;
@@ -56,11 +56,11 @@ StatusOr<absl::string_view> CheckAndLoadFirstAssociatedFile(
 /* static */
 StatusOr<std::unique_ptr<RegexPreprocessor>> RegexPreprocessor::Create(
     tflite::task::core::TfLiteEngine* engine, int input_tensor_index) {
-  ASSIGN_OR_RETURN(auto processor, Processor::Create<RegexPreprocessor>(
+  TFLITE_ASSIGN_OR_RETURN(auto processor, Processor::Create<RegexPreprocessor>(
                                        /* num_expected_tensors = */ 1, engine,
                                        {input_tensor_index},
                                        /* requires_metadata = */ false));
-  RETURN_IF_ERROR(processor->Init());
+  TFLITE_RETURN_IF_ERROR(processor->Init());
   return processor;
 }
 
@@ -70,10 +70,10 @@ absl::Status RegexPreprocessor::Init() {
     return absl::OkStatus();
   }
   // Try if RegexTokenzier metadata can be found.
-  ASSIGN_OR_RETURN(const auto tokenzier_metadata,
+  TFLITE_ASSIGN_OR_RETURN(const auto tokenzier_metadata,
                    TryFindRegexTokenizerMetadata());
 
-  ASSIGN_OR_RETURN(tokenizer_, CreateTokenizerFromMetadata(
+  TFLITE_ASSIGN_OR_RETURN(tokenizer_, CreateTokenizerFromMetadata(
                                    tokenzier_metadata, GetMetadataExtractor()));
   return absl::OkStatus();
 }
@@ -86,7 +86,7 @@ RegexPreprocessor::TryFindRegexTokenizerMetadata() {
     return nullptr;
   }
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       auto tokenizer_metadata,
       GetMetadataExtractor()->FindFirstProcessUnit(
           *tensor_metadata, ProcessUnitOptions_RegexTokenizerOptions));
@@ -120,7 +120,7 @@ RegexPreprocessor::CreateTokenizerFromMetadata(
       ProcessUnitOptions_RegexTokenizerOptions) {
     const tflite::RegexTokenizerOptions* options =
         tokenizer_metadata->options_as<RegexTokenizerOptions>();
-    ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
+    TFLITE_ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
                      CheckAndLoadFirstAssociatedFile(options->vocab_file(),
                                                      metadata_extractor));
     if (options->delim_regex_pattern() == nullptr) {
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/search_postprocessor.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/search_postprocessor.cc
index fb34eea170ad8..e78351787229f 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/search_postprocessor.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/search_postprocessor.cc
@@ -91,16 +91,16 @@ StatusOr<std::unique_ptr<SearchPostprocessor>> SearchPostprocessor::Create(
     TfLiteEngine* engine, int output_index,
     std::unique_ptr<SearchOptions> search_options,
     std::unique_ptr<EmbeddingOptions> embedding_options) {
-  ASSIGN_OR_RETURN(auto embedding_postprocessor,
+  TFLITE_ASSIGN_OR_RETURN(auto embedding_postprocessor,
                    CreateEmbeddingPostprocessor(engine, {output_index},
                                                 std::move(embedding_options)));
 
-  ASSIGN_OR_RETURN(auto search_processor,
+  TFLITE_ASSIGN_OR_RETURN(auto search_processor,
                    Processor::Create<SearchPostprocessor>(
                        /* num_expected_tensors =*/1, engine, {output_index},
                        /* requires_metadata =*/false));
 
-  RETURN_IF_ERROR(search_processor->Init(std::move(embedding_postprocessor),
+  TFLITE_RETURN_IF_ERROR(search_processor->Init(std::move(embedding_postprocessor),
                                          std::move(search_options)));
   return search_processor;
 }
@@ -108,10 +108,10 @@ StatusOr<std::unique_ptr<SearchPostprocessor>> SearchPostprocessor::Create(
 StatusOr<SearchResult> SearchPostprocessor::Postprocess() {
   // Extract embedding.
   Embedding embedding;
-  RETURN_IF_ERROR(embedding_postprocessor_->Postprocess(&embedding));
+  TFLITE_RETURN_IF_ERROR(embedding_postprocessor_->Postprocess(&embedding));
 
   // Search the nearest-neighbor embedding.
-  ASSIGN_OR_RETURN(SearchResult search_result,
+  TFLITE_ASSIGN_OR_RETURN(SearchResult search_result,
                    embedding_searcher_->Search(embedding));
   return search_result;
 }
@@ -126,14 +126,14 @@ absl::Status SearchPostprocessor::Init(
   embedding_postprocessor_ = std::move(embedding_postprocessor);
 
   if (options->has_index_file()) {
-    ASSIGN_OR_RETURN(embedding_searcher_,
+    TFLITE_ASSIGN_OR_RETURN(embedding_searcher_,
                      EmbeddingSearcher::Create(std::move(options)));
   } else {
     // Index File is expected in the metadata if not provided in the options.
-    ASSIGN_OR_RETURN(absl::string_view index_file_content,
+    TFLITE_ASSIGN_OR_RETURN(absl::string_view index_file_content,
                      GetIndexFileContentFromMetadata(*GetMetadataExtractor(),
                                                      *GetTensorMetadata()));
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         embedding_searcher_,
         EmbeddingSearcher::Create(std::move(options), index_file_content));
   }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/universal_sentence_encoder_preprocessor.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/universal_sentence_encoder_preprocessor.cc
index 54dc738e3ab26..7620ef6ce3041 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/universal_sentence_encoder_preprocessor.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/processor/universal_sentence_encoder_preprocessor.cc
@@ -55,10 +55,10 @@ absl::Status UniversalSentenceEncoderPreprocessor::Preprocess(
     const std::string& text) {
   // All input tensors must be populated, even though we're only using the
   // response text input tensor.
-  RETURN_IF_ERROR(PopulateTensor(std::string(""), GetTensor(kQueryTextIndex)));
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(PopulateTensor(std::string(""), GetTensor(kQueryTextIndex)));
+  TFLITE_RETURN_IF_ERROR(
       PopulateTensor(std::string(""), GetTensor(kResponseContextIndex)));
-  RETURN_IF_ERROR(PopulateTensor(text, GetTensor(kResponseTextIndex)));
+  TFLITE_RETURN_IF_ERROR(PopulateTensor(text, GetTensor(kResponseTextIndex)));
   return absl::OkStatus();
 }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_clu_annotator.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_clu_annotator.cc
index f60a556dbbe1b..71068366d96f5 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_clu_annotator.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_clu_annotator.cc
@@ -76,17 +76,17 @@ absl::StatusOr<int> FindTensorIdxByName(
 BertCluAnnotator::CreateFromOptions(
     const BertCluAnnotatorOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
   // Copy options to ensure the ExternalFile outlives the duration of this
   // created BertCluAnnotator object.
   auto options_copy = std::make_unique<BertCluAnnotatorOptions>(options);
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       auto bert_clu_annotator,
       core::TaskAPIFactory::CreateFromBaseOptions<BertCluAnnotator>(
           &options_copy->base_options(), std::move(resolver)));
-  RETURN_IF_ERROR(bert_clu_annotator->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(bert_clu_annotator->Init(std::move(options_copy)));
   return std::move(bert_clu_annotator);
 }
 
@@ -102,7 +102,7 @@ absl::Status BertCluAnnotator::Init(
         "No input process unit found from metadata.",
         support::TfLiteSupportStatus::kMetadataInvalidTokenizerError);
   }
-  ASSIGN_OR_RETURN(tokenizer_,
+  TFLITE_ASSIGN_OR_RETURN(tokenizer_,
                    support::text::tokenizer::CreateTokenizerFromProcessUnit(
                        tokenizer_process_unit, GetMetadataExtractor()));
 
@@ -116,31 +116,31 @@ absl::Status BertCluAnnotator::Init(
 
   tensor_index_map_ = std::make_unique<TensorIndexMap>();
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       tensor_index_map_->token_id_idx,
       FindTensorIdxByName(input_tensors_metadata, kTokenIdTensorName));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       tensor_index_map_->token_mask_idx,
       FindTensorIdxByName(input_tensors_metadata, kMaskTensorName));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       tensor_index_map_->token_type_id_idx,
       FindTensorIdxByName(input_tensors_metadata, kTokenTypeIdTensorName));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       tensor_index_map_->domain_names_idx,
       FindTensorIdxByName(output_tensors_metadata, kDomainTaskNamesTensorName));
-  ASSIGN_OR_RETURN(tensor_index_map_->domain_scores_idx,
+  TFLITE_ASSIGN_OR_RETURN(tensor_index_map_->domain_scores_idx,
                    FindTensorIdxByName(output_tensors_metadata,
                                        kDomainTaskScoresTensorName));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       tensor_index_map_->intent_names_idx,
       FindTensorIdxByName(output_tensors_metadata, kIntentTaskNamesTensorName));
-  ASSIGN_OR_RETURN(tensor_index_map_->intent_scores_idx,
+  TFLITE_ASSIGN_OR_RETURN(tensor_index_map_->intent_scores_idx,
                    FindTensorIdxByName(output_tensors_metadata,
                                        kIntentTaskScoresTensorName));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       tensor_index_map_->slot_names_idx,
       FindTensorIdxByName(output_tensors_metadata, kSlotTaskNamesTensorName));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       tensor_index_map_->slot_scores_idx,
       FindTensorIdxByName(output_tensors_metadata, kSlotTaskScoresTensorName));
 
@@ -150,21 +150,21 @@ absl::Status BertCluAnnotator::Init(
       interpreter, tensor_index_map_.get(), options_.get(),
       static_cast<tflite::support::text::tokenizer::BertTokenizer*>(
           tokenizer_.get()));
-  RETURN_IF_ERROR(m.status());
+  TFLITE_RETURN_IF_ERROR(m.status());
   modules_.emplace_back(*std::move(m));
   // DomainModule.
   m = DomainModule::Create(interpreter, tensor_index_map_.get(),
                            options_.get());
-  RETURN_IF_ERROR(m.status());
+  TFLITE_RETURN_IF_ERROR(m.status());
   modules_.emplace_back(*std::move(m));
   // IntentModule.
   m = IntentModule::Create(interpreter, tensor_index_map_.get(),
                            options_.get());
-  RETURN_IF_ERROR(m.status());
+  TFLITE_RETURN_IF_ERROR(m.status());
   modules_.emplace_back(*std::move(m));
   // SlotModule.
   m = SlotModule::Create(interpreter, tensor_index_map_.get(), options_.get());
-  RETURN_IF_ERROR(m.status());
+  TFLITE_RETURN_IF_ERROR(m.status());
   modules_.emplace_back(*std::move(m));
 
   return absl::OkStatus();
@@ -181,7 +181,7 @@ absl::Status BertCluAnnotator::Preprocess(
   artifacts_.Clear();
   // Preprocess
   for (const auto& module : modules_) {
-    RETURN_IF_ERROR(module->Preprocess(request, &artifacts_));
+    TFLITE_RETURN_IF_ERROR(module->Preprocess(request, &artifacts_));
   }
   return absl::OkStatus();
 }
@@ -191,7 +191,7 @@ tflite::support::StatusOr<CluResponse> BertCluAnnotator::Postprocess(
     const CluRequest& request) {
   CluResponse response;
   for (const auto& module : modules_) {
-    RETURN_IF_ERROR(module->Postprocess(&artifacts_, &response));
+    TFLITE_RETURN_IF_ERROR(module->Postprocess(&artifacts_, &response));
   }
   return response;
 }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_nl_classifier.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_nl_classifier.cc
index 52c898dacb9ca..6b85f361b6047 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_nl_classifier.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_nl_classifier.cc
@@ -83,15 +83,15 @@ StatusOr<std::vector<core::Category>> BertNLClassifier::Postprocess(
 StatusOr<std::unique_ptr<BertNLClassifier>> BertNLClassifier::CreateFromOptions(
     const BertNLClassifierOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
   auto options_copy = absl::make_unique<BertNLClassifierOptions>(options);
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       auto bert_nl_classifier,
       core::TaskAPIFactory::CreateFromBaseOptions<BertNLClassifier>(
           &options_copy->base_options(), std::move(resolver)));
-  RETURN_IF_ERROR(bert_nl_classifier->Initialize(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(bert_nl_classifier->Initialize(std::move(options_copy)));
   return std::move(bert_nl_classifier);
 }
 
@@ -100,9 +100,9 @@ absl::Status BertNLClassifier::Initialize(
   options_ = std::move(options);
 
   // Create preprocessor.
-  ASSIGN_OR_RETURN(auto input_indices,
+  TFLITE_ASSIGN_OR_RETURN(auto input_indices,
                    GetBertInputTensorIndices(GetTfLiteEngine()));
-  ASSIGN_OR_RETURN(preprocessor_,
+  TFLITE_ASSIGN_OR_RETURN(preprocessor_,
                    processor::BertPreprocessor::Create(
                        GetTfLiteEngine(),
                        {input_indices[0], input_indices[1], input_indices[2]}));
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_question_answerer.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_question_answerer.cc
index 444724ae504b0..152be993e86b4 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_question_answerer.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/bert_question_answerer.cc
@@ -65,17 +65,17 @@ StatusOr<std::unique_ptr<QuestionAnswerer>>
 BertQuestionAnswerer::CreateFromOptions(
     const BertQuestionAnswererOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
   // Copy options to ensure the ExternalFile outlives the duration of this
   // created BertQuestionAnswerer object.
   auto options_copy = absl::make_unique<BertQuestionAnswererOptions>(options);
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       auto bert_question_answerer,
       core::TaskAPIFactory::CreateFromBaseOptions<BertQuestionAnswerer>(
           &options_copy->base_options(), std::move(resolver)));
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       bert_question_answerer->InitializeFromMetadata(std::move(options_copy)));
   return std::move(bert_question_answerer);
 }
@@ -113,7 +113,7 @@ StatusOr<std::unique_ptr<QuestionAnswerer>>
 BertQuestionAnswerer::CreateBertQuestionAnswererFromFile(
     const std::string& path_to_model, const std::string& path_to_vocab) {
   std::unique_ptr<BertQuestionAnswerer> api_to_init;
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       api_to_init,
       core::TaskAPIFactory::CreateFromFile<BertQuestionAnswerer>(
           path_to_model,
@@ -128,7 +128,7 @@ BertQuestionAnswerer::CreateBertQuestionAnswererFromBuffer(
     const char* model_buffer_data, size_t model_buffer_size,
     const char* vocab_buffer_data, size_t vocab_buffer_size) {
   std::unique_ptr<BertQuestionAnswerer> api_to_init;
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       api_to_init,
       core::TaskAPIFactory::CreateFromBuffer<BertQuestionAnswerer>(
           model_buffer_data, model_buffer_size,
@@ -143,7 +143,7 @@ StatusOr<std::unique_ptr<QuestionAnswerer>>
 BertQuestionAnswerer::CreateAlbertQuestionAnswererFromFile(
     const std::string& path_to_model, const std::string& path_to_spmodel) {
   std::unique_ptr<BertQuestionAnswerer> api_to_init;
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       api_to_init,
       core::TaskAPIFactory::CreateFromFile<BertQuestionAnswerer>(
           path_to_model,
@@ -158,7 +158,7 @@ BertQuestionAnswerer::CreateAlbertQuestionAnswererFromBuffer(
     const char* model_buffer_data, size_t model_buffer_size,
     const char* spmodel_buffer_data, size_t spmodel_buffer_size) {
   std::unique_ptr<BertQuestionAnswerer> api_to_init;
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       api_to_init,
       core::TaskAPIFactory::CreateFromBuffer<BertQuestionAnswerer>(
           model_buffer_data, model_buffer_size,
@@ -292,11 +292,11 @@ absl::Status BertQuestionAnswerer::Preprocess(
   segment_ids.insert(segment_ids.end(), zeros_to_pad, 0);
 
   // input_ids INT32[1, 384]
-  RETURN_IF_ERROR(PopulateTensor(input_ids, ids_tensor));
+  TFLITE_RETURN_IF_ERROR(PopulateTensor(input_ids, ids_tensor));
   // input_mask INT32[1, 384]
-  RETURN_IF_ERROR(PopulateTensor(input_mask, mask_tensor));
+  TFLITE_RETURN_IF_ERROR(PopulateTensor(input_mask, mask_tensor));
   // segment_ids INT32[1, 384]
-  RETURN_IF_ERROR(PopulateTensor(segment_ids, segment_ids_tensor));
+  TFLITE_RETURN_IF_ERROR(PopulateTensor(segment_ids, segment_ids_tensor));
 
   return absl::OkStatus();
 }
@@ -323,9 +323,9 @@ StatusOr<std::vector<QaAnswer>> BertQuestionAnswerer::Postprocess(
   std::vector<float> start_logits;
 
   // end_logits FLOAT[1, 384]
-  RETURN_IF_ERROR(PopulateVector(end_logits_tensor, &end_logits));
+  TFLITE_RETURN_IF_ERROR(PopulateVector(end_logits_tensor, &end_logits));
   // start_logits FLOAT[1, 384]
-  RETURN_IF_ERROR(PopulateVector(start_logits_tensor, &start_logits));
+  TFLITE_RETURN_IF_ERROR(PopulateVector(start_logits_tensor, &start_logits));
 
   auto start_indices = ReverseSortIndices(start_logits);
   auto end_indices = ReverseSortIndices(end_logits);
@@ -380,7 +380,7 @@ absl::Status BertQuestionAnswerer::InitializeFromMetadata(
         "No input process unit found from metadata.",
         TfLiteSupportStatus::kMetadataInvalidTokenizerError);
   }
-  ASSIGN_OR_RETURN(tokenizer_,
+  TFLITE_ASSIGN_OR_RETURN(tokenizer_,
                    CreateTokenizerFromProcessUnit(tokenizer_process_unit,
                                                   GetMetadataExtractor()));
   return absl::OkStatus();
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/slot_repr.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/slot_repr.cc
index 114a721ee40ef..917479e9f6041 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/slot_repr.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/slot_repr.cc
@@ -70,7 +70,7 @@ StatusOr<SlotRepr> SlotRepr::CreateFromIob(const absl::string_view repr) {
                                             kSlotBTagPrefix, " or ",
                                             kSlotITagPrefix, ": ", repr));
   }
-  ASSIGN_OR_RETURN(const auto domain_name_pair, SplitDomainAndName(full_name));
+  TFLITE_ASSIGN_OR_RETURN(const auto domain_name_pair, SplitDomainAndName(full_name));
   ret.domain_ = std::string(std::get<0>(domain_name_pair));
   ret.name_ = std::string(std::get<1>(domain_name_pair));
   return ret;
@@ -117,12 +117,12 @@ absl::Status ResolveInconsistentIobTagSeq(std::vector<std::string>* tag_names) {
   for (size_t i = 0; i < tag_names->size(); ++i) {
     const auto& tag = tag_names->at(i);
     if (SlotRepr::IsI(tag)) {
-      ASSIGN_OR_RETURN(const SlotRepr repr, SlotRepr::CreateFromIob(tag));
+      TFLITE_ASSIGN_OR_RETURN(const SlotRepr repr, SlotRepr::CreateFromIob(tag));
       if (SlotRepr::IsO(prev_tag)) {
         // inconsistent case. eg.   O I-time
         (*tag_names)[i] = repr.BTag();
       } else {
-        ASSIGN_OR_RETURN(const SlotRepr prev_repr,
+        TFLITE_ASSIGN_OR_RETURN(const SlotRepr prev_repr,
                          SlotRepr::CreateFromIob(prev_tag));
         if (prev_repr.FullName() != repr.FullName()) {
           // inconsistent case. eg.   B-time I-per    I-time I-per
@@ -151,7 +151,7 @@ absl::StatusOr<std::vector<SlotMentionStruct>> DecodeSlotChunks(
   // Make a copy since the input is constant while still modifications are
   // needed.
   std::vector<std::string> tag_names_fixed(tag_names.begin(), tag_names.end());
-  RETURN_IF_ERROR(ResolveInconsistentIobTagSeq(&tag_names_fixed));
+  TFLITE_RETURN_IF_ERROR(ResolveInconsistentIobTagSeq(&tag_names_fixed));
 
   std::vector<SlotMentionStruct> result;
   // Compute slot tag spans
@@ -165,7 +165,7 @@ absl::StatusOr<std::vector<SlotMentionStruct>> DecodeSlotChunks(
     // I tag
     if (SlotRepr::IsI(tag_str_i)) {
       SlotRepr slot_tag_i;
-      ASSIGN_OR_RETURN(slot_tag_i, SlotRepr::CreateFromIob(tag_str_i));
+      TFLITE_ASSIGN_OR_RETURN(slot_tag_i, SlotRepr::CreateFromIob(tag_str_i));
       if (cur_slot == slot_tag_i) {
         cur_slot_exclusive_end = token_i + 1;
         // Compute the phrase level confidence by taking min(tag confidences).
@@ -194,7 +194,7 @@ absl::StatusOr<std::vector<SlotMentionStruct>> DecodeSlotChunks(
       cur_slot_start = token_i;
       cur_slot_exclusive_end = token_i + 1;
       cur_slot_confidence = tag_probs[token_i];
-      ASSIGN_OR_RETURN(cur_slot, SlotRepr::CreateFromIob(tag_str_i));
+      TFLITE_ASSIGN_OR_RETURN(cur_slot, SlotRepr::CreateFromIob(tag_str_i));
     } else {
       // O tag
       if (!SlotRepr::IsO(tag_str_i)) {
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/slot_tagging_output.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/slot_tagging_output.cc
index 6643cf6f4e95d..1c582721b6c1c 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/slot_tagging_output.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/slot_tagging_output.cc
@@ -64,7 +64,7 @@ DecodeSlotChunksPredictOnFirstSubword(
   const int last_exclusive_end = whole_word_token_alignments.back().second;
   whole_word_token_alignments.emplace_back(last_exclusive_end,
                                            last_exclusive_end);
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       auto slot_mentions,
       DecodeSlotChunks(first_subword_tag_names, first_subword_tag_probs,
                        whole_word_token_alignments));
@@ -105,7 +105,7 @@ absl::Status SlotModulePopulateResponse(
     // Prepare the data and decode slot chunks.
     std::vector<SlotMentionStruct> cur_turn_slot_mentions;
       // Decode slot chunks based on first subword tokens in the turn.
-    ASSIGN_OR_RETURN(cur_turn_slot_mentions,
+    TFLITE_ASSIGN_OR_RETURN(cur_turn_slot_mentions,
                      DecodeSlotChunksPredictOnFirstSubword(
                          cur_turn_start, cur_turn_end, seq_len, tags_as_span,
                          confidences_as_span, token_alignments_as_span,
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/tflite_modules.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/tflite_modules.cc
index 634c10b21934b..d60c1b9b6b057 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/tflite_modules.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/clu_lib/tflite_modules.cc
@@ -65,7 +65,7 @@ absl::Status PopulateInputTextTensorForBERT(
   std::vector<std::pair<int, int>> alignments;
   std::vector<int> first_subword_indicators;
   std::vector<int> segment_id_list;
-  RETURN_IF_ERROR(BertPreprocessing(
+  TFLITE_RETURN_IF_ERROR(BertPreprocessing(
       tokenizer, artifacts->reverse_utterance_list_to_encode, max_seq_len,
       max_history_turns, &token_ids, &alignments, &first_subword_indicators,
       &segment_id_list, &(artifacts->token_turn_ids)));
@@ -146,9 +146,9 @@ absl::StatusOr<std::unique_ptr<AbstractModule>> UtteranceSeqModule::Create(
     const tflite::support::text::tokenizer::BertTokenizer* tokenizer) {
   auto out = std::make_unique<UtteranceSeqModule>();
   out->tensor_index_map_ = tensor_index_map;
-  RETURN_IF_ERROR(out->Init(interpreter, options));
+  TFLITE_RETURN_IF_ERROR(out->Init(interpreter, options));
   out->tokenizer_ = tokenizer;
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       out->max_seq_len_,
       GetInputSeqDimSize(tensor_index_map->token_id_idx, interpreter));
   out->max_history_turns_ = options->max_history_turns();
@@ -195,13 +195,13 @@ absl::StatusOr<std::unique_ptr<AbstractModule>> DomainModule::Create(
   auto out = std::make_unique<DomainModule>();
   out->tensor_index_map_ = tensor_index_map;
   out->domain_threshold_ = options->domain_threshold();
-  RETURN_IF_ERROR(out->Init(interpreter, options));
+  TFLITE_RETURN_IF_ERROR(out->Init(interpreter, options));
   return out;
 }
 
 absl::Status DomainModule::Postprocess(Artifacts* artifacts,
                                        CluResponse* response) const {
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       const auto t_output,
       NamesAndConfidencesFromOutput(tensor_index_map_->domain_names_idx,
                                     tensor_index_map_->domain_scores_idx));
@@ -225,20 +225,20 @@ absl::StatusOr<std::unique_ptr<AbstractModule>> IntentModule::Create(
   out->tensor_index_map_ = tensor_index_map;
   out->intent_threshold_ = options->intent_threshold();
   out->categorical_slot_threshold_ = options->categorical_slot_threshold();
-  RETURN_IF_ERROR(out->Init(interpreter, options));
+  TFLITE_RETURN_IF_ERROR(out->Init(interpreter, options));
   return out;
 }
 
 absl::Status IntentModule::Postprocess(Artifacts* artifacts,
                                        CluResponse* response) const {
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       const auto t_output,
       NamesAndConfidencesFromOutput(tensor_index_map_->intent_names_idx,
                                     tensor_index_map_->intent_scores_idx));
   const auto& [names, confidences] = t_output;
 
   for (int i = 0; i < names.size(); ++i) {
-    ASSIGN_OR_RETURN(const auto name, IntentRepr::CreateFromFullName(names[i]));
+    TFLITE_ASSIGN_OR_RETURN(const auto name, IntentRepr::CreateFromFullName(names[i]));
     // TODO(xysong): Differentiate categorical slots from intents.
     std::vector<absl::string_view> parts = absl::StrSplit(name.Name(), '=');
     if (parts.size() == 2) {
@@ -272,18 +272,18 @@ absl::StatusOr<std::unique_ptr<AbstractModule>> SlotModule::Create(
   out->tensor_index_map_ = tensor_index_map;
   out->mentioned_slot_threshold_ =
       options->mentioned_slot_threshold();
-  RETURN_IF_ERROR(out->Init(interpreter, options));
+  TFLITE_RETURN_IF_ERROR(out->Init(interpreter, options));
   return out;
 }
 
 absl::Status SlotModule::Postprocess(Artifacts* artifacts,
                                      CluResponse* response) const {
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       const auto t_output,
       NamesAndConfidencesFromOutput(tensor_index_map_->slot_names_idx,
                                     tensor_index_map_->slot_scores_idx));
   const auto& [tags, confidences] = t_output;
-  RETURN_IF_ERROR(SlotModulePopulateResponse(
+  TFLITE_RETURN_IF_ERROR(SlotModulePopulateResponse(
       tags, confidences, artifacts->token_alignments, artifacts->token_turn_ids,
       artifacts->first_subword_indicators, mentioned_slot_threshold_,
       artifacts->reverse_utterance_list_to_encode, response));
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/nlclassifier/nl_classifier.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/nlclassifier/nl_classifier.cc
index c08abda57401f..181ed79e8a4bd 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/nlclassifier/nl_classifier.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/nlclassifier/nl_classifier.cc
@@ -191,7 +191,7 @@ absl::Status NLClassifier::Initialize(
     std::unique_ptr<tflite::task::text::NLClassifierOptions> options) {
   proto_options_ = std::move(options);
 
-  RETURN_IF_ERROR(Initialize(NLClassifierOptions{
+  TFLITE_RETURN_IF_ERROR(Initialize(NLClassifierOptions{
       /* input_tensor_index= */ proto_options_->input_tensor_index(),
       /* output_score_tensor_index= */
       proto_options_->output_score_tensor_index(),
@@ -222,7 +222,7 @@ absl::Status NLClassifier::Initialize(const NLClassifierOptions& options) {
   }
 
   // Create preprocessor.
-  ASSIGN_OR_RETURN(preprocessor_, processor::RegexPreprocessor::Create(
+  TFLITE_ASSIGN_OR_RETURN(preprocessor_, processor::RegexPreprocessor::Create(
                                       GetTfLiteEngine(), input_index));
 
   // output score tensor should be type
@@ -295,16 +295,16 @@ absl::Status NLClassifier::Initialize(const NLClassifierOptions& options) {
 StatusOr<std::unique_ptr<NLClassifier>> NLClassifier::CreateFromOptions(
     const NLClassifierProtoOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
   // Copy options to ensure the ExternalFile outlives the duration of this
   // created NLClassifier object.
   auto options_copy = absl::make_unique<NLClassifierProtoOptions>(options);
 
-  ASSIGN_OR_RETURN(auto nl_classifier,
+  TFLITE_ASSIGN_OR_RETURN(auto nl_classifier,
                    TaskAPIFactory::CreateFromBaseOptions<NLClassifier>(
                        &options_copy->base_options(), std::move(resolver)));
-  RETURN_IF_ERROR(nl_classifier->Initialize(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(nl_classifier->Initialize(std::move(options_copy)));
 
   return nl_classifier;
 }
@@ -315,11 +315,11 @@ NLClassifier::CreateFromBufferAndOptions(
     const NLClassifierOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
   std::unique_ptr<NLClassifier> nl_classifier;
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       nl_classifier,
       core::TaskAPIFactory::CreateFromBuffer<NLClassifier>(
           model_buffer_data, model_buffer_size, std::move(resolver)));
-  RETURN_IF_ERROR(nl_classifier->Initialize(options));
+  TFLITE_RETURN_IF_ERROR(nl_classifier->Initialize(options));
   return std::move(nl_classifier);
 }
 
@@ -327,10 +327,10 @@ StatusOr<std::unique_ptr<NLClassifier>> NLClassifier::CreateFromFileAndOptions(
     const std::string& path_to_model, const NLClassifierOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
   std::unique_ptr<NLClassifier> nl_classifier;
-  ASSIGN_OR_RETURN(nl_classifier,
+  TFLITE_ASSIGN_OR_RETURN(nl_classifier,
                    core::TaskAPIFactory::CreateFromFile<NLClassifier>(
                        path_to_model, std::move(resolver)));
-  RETURN_IF_ERROR(nl_classifier->Initialize(options));
+  TFLITE_RETURN_IF_ERROR(nl_classifier->Initialize(options));
   return std::move(nl_classifier);
 }
 
@@ -338,10 +338,10 @@ StatusOr<std::unique_ptr<NLClassifier>> NLClassifier::CreateFromFdAndOptions(
     int fd, const NLClassifierOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
   std::unique_ptr<NLClassifier> nl_classifier;
-  ASSIGN_OR_RETURN(nl_classifier,
+  TFLITE_ASSIGN_OR_RETURN(nl_classifier,
                    core::TaskAPIFactory::CreateFromFileDescriptor<NLClassifier>(
                        fd, std::move(resolver)));
-  RETURN_IF_ERROR(nl_classifier->Initialize(options));
+  TFLITE_RETURN_IF_ERROR(nl_classifier->Initialize(options));
   return std::move(nl_classifier);
 }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/text_embedder.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/text_embedder.cc
index 7363540797cf2..dc908baeb4026 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/text_embedder.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/text_embedder.cc
@@ -66,15 +66,15 @@ tflite::support::StatusOr<double> TextEmbedder::CosineSimilarity(
 tflite::support::StatusOr<std::unique_ptr<TextEmbedder>>
 TextEmbedder::CreateFromOptions(const TextEmbedderOptions& options,
                                 std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
   // Copy options to ensure the ExternalFile-s outlive the constructed object.
   auto options_copy = absl::make_unique<TextEmbedderOptions>(options);
 
-  ASSIGN_OR_RETURN(auto text_embedder,
+  TFLITE_ASSIGN_OR_RETURN(auto text_embedder,
                    TaskAPIFactory::CreateFromBaseOptions<TextEmbedder>(
                        &options_copy->base_options(), std::move(resolver)));
 
-  RETURN_IF_ERROR(text_embedder->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(text_embedder->Init(std::move(options_copy)));
 
   return text_embedder;
 }
@@ -87,7 +87,7 @@ absl::Status TextEmbedder::Init(std::unique_ptr<TextEmbedderOptions> options) {
   std::vector<int> output_tensor_indices;
   if (input_count == 1) {
     // Assume Regex-based model.
-    ASSIGN_OR_RETURN(preprocessor_, processor::RegexPreprocessor::Create(
+    TFLITE_ASSIGN_OR_RETURN(preprocessor_, processor::RegexPreprocessor::Create(
                                         GetTfLiteEngine(), 0));
     // All output tensors are assumed to be embeddings.
     for (int i = 0; i < GetTfLiteEngine()->GetOutputs().size(); ++i) {
@@ -97,9 +97,9 @@ absl::Status TextEmbedder::Init(std::unique_ptr<TextEmbedderOptions> options) {
     // Check if BertTokenizer is present.
     if (GetMetadataExtractor()->GetInputProcessUnitsCount() > 0) {
       // Assume Bert-based model.
-      ASSIGN_OR_RETURN(auto input_indices,
+      TFLITE_ASSIGN_OR_RETURN(auto input_indices,
                        GetBertInputTensorIndices(GetTfLiteEngine()));
-      ASSIGN_OR_RETURN(preprocessor_, processor::BertPreprocessor::Create(
+      TFLITE_ASSIGN_OR_RETURN(preprocessor_, processor::BertPreprocessor::Create(
                                           GetTfLiteEngine(),
                                           {input_indices[0], input_indices[1],
                                            input_indices[2]}));
@@ -109,13 +109,13 @@ absl::Status TextEmbedder::Init(std::unique_ptr<TextEmbedderOptions> options) {
       }
     } else {
       // Assume Universal Sentence Encoder-based model.
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           auto input_indices,
           GetUniversalSentenceEncoderInputTensorIndices(GetTfLiteEngine()));
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           auto output_indices,
           GetUniversalSentenceEncoderOutputTensorIndices(GetTfLiteEngine()));
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           preprocessor_,
           processor::UniversalSentenceEncoderPreprocessor::Create(
               GetTfLiteEngine(),
@@ -154,7 +154,7 @@ absl::Status TextEmbedder::Init(std::unique_ptr<TextEmbedderOptions> options) {
           "number of output tensors.",
           support::TfLiteSupportStatus::kInvalidArgumentError);
     }
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         auto processor,
         processor::EmbeddingPostprocessor::Create(
             GetTfLiteEngine(), {output_tensor_indices[i]}, std::move(option)));
@@ -183,7 +183,7 @@ tflite::support::StatusOr<EmbeddingResult> TextEmbedder::Postprocess(
     const std::string& input) {
   EmbeddingResult result;
   for (int i = 0; i < postprocessors_.size(); ++i) {
-    RETURN_IF_ERROR(
+    TFLITE_RETURN_IF_ERROR(
         postprocessors_.at(i)->Postprocess(result.add_embeddings()));
   }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/text_searcher.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/text_searcher.cc
index fd9cbcb29adfd..9b8de0bb025d4 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/text_searcher.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/text_searcher.cc
@@ -65,10 +65,10 @@ StatusOr<std::unique_ptr<TextSearcher>> TextSearcher::CreateFromOptions(
   // Copy options to ensure the ExternalFile-s outlive the constructed object.
   auto options_copy = absl::make_unique<TextSearcherOptions>(options);
 
-  ASSIGN_OR_RETURN(auto text_searcher,
+  TFLITE_ASSIGN_OR_RETURN(auto text_searcher,
                    TaskAPIFactory::CreateFromBaseOptions<TextSearcher>(
                        &options_copy->base_options(), std::move(resolver)));
-  RETURN_IF_ERROR(text_searcher->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(text_searcher->Init(std::move(options_copy)));
 
   return text_searcher;
 }
@@ -87,7 +87,7 @@ absl::Status TextSearcher::Init(std::unique_ptr<TextSearcherOptions> options) {
           absl::StrFormat("Expected exactly 1 output tensor, got %d.",
                           output_count));
     }
-    ASSIGN_OR_RETURN(preprocessor_, processor::RegexPreprocessor::Create(
+    TFLITE_ASSIGN_OR_RETURN(preprocessor_, processor::RegexPreprocessor::Create(
                                         GetTfLiteEngine(), 0));
     output_tensor_index = 0;
   } else if (input_count == 3) {
@@ -100,22 +100,22 @@ absl::Status TextSearcher::Init(std::unique_ptr<TextSearcherOptions> options) {
             absl::StrFormat("Expected exactly 1 output tensor, got %d.",
                             output_count));
       }
-      ASSIGN_OR_RETURN(auto input_indices,
+      TFLITE_ASSIGN_OR_RETURN(auto input_indices,
                        GetBertInputTensorIndices(GetTfLiteEngine()));
-      ASSIGN_OR_RETURN(preprocessor_, processor::BertPreprocessor::Create(
+      TFLITE_ASSIGN_OR_RETURN(preprocessor_, processor::BertPreprocessor::Create(
                                           GetTfLiteEngine(),
                                           {input_indices[0], input_indices[1],
                                            input_indices[2]}));
       output_tensor_index = 0;
     } else {
       // Assume Universal Sentence Encoder-based model.
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           auto input_indices,
           GetUniversalSentenceEncoderInputTensorIndices(GetTfLiteEngine()));
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           auto output_indices,
           GetUniversalSentenceEncoderOutputTensorIndices(GetTfLiteEngine()));
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           preprocessor_,
           processor::UniversalSentenceEncoderPreprocessor::Create(
               GetTfLiteEngine(),
@@ -129,7 +129,7 @@ absl::Status TextSearcher::Init(std::unique_ptr<TextSearcherOptions> options) {
         absl::StrFormat("Expected 1 or 3 input tensors, got %d.", input_count));
   }
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       postprocessor_,
       SearchPostprocessor::Create(
           GetTfLiteEngine(), output_tensor_index,
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/universal_sentence_encoder_qa.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/universal_sentence_encoder_qa.cc
index 52b0041039acf..439dfa4873459 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/universal_sentence_encoder_qa.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/text/universal_sentence_encoder_qa.cc
@@ -119,13 +119,13 @@ StatusOr<RetrievalOutput> UniversalSentenceEncoderQA::Retrieve(
 
       // Only encode query for the first time.
       if (i == 0) {
-        RETURN_IF_ERROR(
+        TFLITE_RETURN_IF_ERROR(
             CopyVector(out.query_encoding, output.mutable_query_encoding()));
       }
 
       // For each answer, set the response result.
       auto r = output.mutable_response_results()->Add();
-      RETURN_IF_ERROR(CopyVector(out.response_encoding, r->mutable_encoding()));
+      TFLITE_RETURN_IF_ERROR(CopyVector(out.response_encoding, r->mutable_encoding()));
     } else {
       // If response is already encoded, encode query only and keep response
       // encoding.
@@ -164,7 +164,7 @@ StatusOr<FeatureVector> UniversalSentenceEncoderQA::EncodeQuery(
 
   const auto& output = Run(query_text, "", "");
   FeatureVector v;
-  RETURN_IF_ERROR(CopyVector(output.query_encoding, &v));
+  TFLITE_RETURN_IF_ERROR(CopyVector(output.query_encoding, &v));
   return v;
 }
 
@@ -178,7 +178,7 @@ StatusOr<FeatureVector> UniversalSentenceEncoderQA::EncodeResponse(
 
   const auto& output = Run("", response_text, response_context);
   FeatureVector v;
-  RETURN_IF_ERROR(CopyVector(output.response_encoding, &v));
+  TFLITE_RETURN_IF_ERROR(CopyVector(output.response_encoding, &v));
   return v;
 }
 
@@ -215,11 +215,11 @@ std::vector<size_t> UniversalSentenceEncoderQA::Top(
 
 Status UniversalSentenceEncoderQA::Preprocess(
     const std::vector<TfLiteTensor*>& input_tensors, const QAInput& input) {
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       PopulateTensor(input.query_text, input_tensors[input_indices_[0]]));
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       PopulateTensor(input.response_context, input_tensors[input_indices_[1]]));
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       PopulateTensor(input.response_text, input_tensors[input_indices_[2]]));
 
   return absl::OkStatus();
@@ -248,10 +248,10 @@ absl::Status UniversalSentenceEncoderQA::Init(
     std::unique_ptr<RetrievalOptions> options) {
   options_ = std::move(options);
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       input_indices_,
       GetUniversalSentenceEncoderInputTensorIndices(GetTfLiteEngine()));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       output_indices_,
       GetUniversalSentenceEncoderOutputTensorIndices(GetTfLiteEngine()));
 
@@ -262,18 +262,18 @@ StatusOr<std::unique_ptr<UniversalSentenceEncoderQA>>
 UniversalSentenceEncoderQA::CreateFromOption(
     const RetrievalOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
   // Copy options to ensure the ExternalFile outlives the duration of this
   // created object.
   auto options_copy = absl::make_unique<RetrievalOptions>(options);
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       auto encoder,
       TaskAPIFactory::CreateFromBaseOptions<UniversalSentenceEncoderQA>(
           &options_copy->base_options(), std::move(resolver)));
 
-  RETURN_IF_ERROR(encoder->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(encoder->Init(std::move(options_copy)));
   return encoder;
 }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/core/base_vision_task_api.h b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/core/base_vision_task_api.h
index 76a03671b54af..1d86136da193d 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/core/base_vision_task_api.h
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/core/base_vision_task_api.h
@@ -73,7 +73,7 @@ class BaseVisionTaskApi
   // already successfully initialized before calling this method.
   virtual absl::Status CheckAndSetInputs() {
     // BaseTaskApi always assume having a single input.
-    ASSIGN_OR_RETURN(preprocessor_,
+    TFLITE_ASSIGN_OR_RETURN(preprocessor_,
                      ::tflite::task::processor::ImagePreprocessor::Create(
                          this->GetTfLiteEngine(), {0}, process_engine_));
     return absl::OkStatus();
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/core/classification_head.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/core/classification_head.cc
index b5b57f21e939f..1bcaee2b86ddc 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/core/classification_head.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/core/classification_head.cc
@@ -44,7 +44,7 @@ StatusOr<ClassificationHead> BuildClassificationHead(
           output_tensor_metadata,
           tflite::AssociatedFileType_TENSOR_AXIS_LABELS);
   if (!labels_filename.empty()) {
-    ASSIGN_OR_RETURN(absl::string_view labels_file,
+    TFLITE_ASSIGN_OR_RETURN(absl::string_view labels_file,
                      metadata_extractor.GetAssociatedFile(labels_filename));
     const std::string display_names_filename =
         ModelMetadataExtractor::FindFirstAssociatedFileName(
@@ -53,15 +53,15 @@ StatusOr<ClassificationHead> BuildClassificationHead(
             display_names_locale);
     absl::string_view display_names_file;
     if (!display_names_filename.empty()) {
-      ASSIGN_OR_RETURN(display_names_file, metadata_extractor.GetAssociatedFile(
+      TFLITE_ASSIGN_OR_RETURN(display_names_file, metadata_extractor.GetAssociatedFile(
                                                display_names_filename));
     }
-    ASSIGN_OR_RETURN(head.label_map_items,
+    TFLITE_ASSIGN_OR_RETURN(head.label_map_items,
                      BuildLabelMapFromFiles(labels_file, display_names_file));
   }
 
   // Set score threshold, if present.
-  ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_thresholding_process_unit,
+  TFLITE_ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_thresholding_process_unit,
                    ModelMetadataExtractor::FindFirstProcessUnit(
                        output_tensor_metadata,
                        tflite::ProcessUnitOptions_ScoreThresholdingOptions));
@@ -72,7 +72,7 @@ StatusOr<ClassificationHead> BuildClassificationHead(
   }
 
   // Build score calibration parameters, if present.
-  ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_calibration_process_unit,
+  TFLITE_ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_calibration_process_unit,
                    ModelMetadataExtractor::FindFirstProcessUnit(
                        output_tensor_metadata,
                        tflite::ProcessUnitOptions_ScoreCalibrationOptions));
@@ -95,10 +95,10 @@ StatusOr<ClassificationHead> BuildClassificationHead(
           "parameters file with type TENSOR_AXIS_SCORE_CALIBRATION.",
           TfLiteSupportStatus::kMetadataAssociatedFileNotFoundError);
     }
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         absl::string_view score_calibration_file,
         metadata_extractor.GetAssociatedFile(score_calibration_filename));
-    ASSIGN_OR_RETURN(SigmoidCalibrationParameters sigmoid_params,
+    TFLITE_ASSIGN_OR_RETURN(SigmoidCalibrationParameters sigmoid_params,
                      BuildSigmoidCalibrationParams(
                          *score_calibration_process_unit
                               ->options_as_ScoreCalibrationOptions(),
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_classifier.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_classifier.cc
index aa1e7707dd99b..60cd7abb83374 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_classifier.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_classifier.cc
@@ -52,20 +52,20 @@ using ::tflite::task::core::TfLiteEngine;
 StatusOr<std::unique_ptr<ImageClassifier>> ImageClassifier::CreateFromOptions(
     const ImageClassifierOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
   // Copy options to ensure the ExternalFile outlives the constructed object.
   auto options_copy = absl::make_unique<ImageClassifierOptions>(options);
 
   std::unique_ptr<ImageClassifier> image_classifier;
   if (options_copy->has_model_file_with_metadata()) {
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         image_classifier,
         TaskAPIFactory::CreateFromExternalFileProto<ImageClassifier>(
             &options_copy->model_file_with_metadata(), std::move(resolver),
             options_copy->num_threads(), options_copy->compute_settings()));
   } else if (options_copy->base_options().has_model_file()) {
-    ASSIGN_OR_RETURN(image_classifier,
+    TFLITE_ASSIGN_OR_RETURN(image_classifier,
                      TaskAPIFactory::CreateFromBaseOptions<ImageClassifier>(
                          &options_copy->base_options(), std::move(resolver)));
   } else {
@@ -77,7 +77,7 @@ StatusOr<std::unique_ptr<ImageClassifier>> ImageClassifier::CreateFromOptions(
         TfLiteSupportStatus::kInvalidArgumentError);
   }
 
-  RETURN_IF_ERROR(image_classifier->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(image_classifier->Init(std::move(options_copy)));
 
   return image_classifier;
 }
@@ -125,18 +125,18 @@ absl::Status ImageClassifier::Init(
 
   // Perform pre-initialization actions (by default, sets the process engine for
   // image pre-processing to kLibyuv as a sane default).
-  RETURN_IF_ERROR(PreInit());
+  TFLITE_RETURN_IF_ERROR(PreInit());
 
   // Sanity check and set inputs and outputs.
-  RETURN_IF_ERROR(CheckAndSetInputs());
-  RETURN_IF_ERROR(CheckAndSetOutputs());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetInputs());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetOutputs());
 
   // Initialize class whitelisting/blacklisting, if any.
-  RETURN_IF_ERROR(CheckAndSetClassNameSet());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetClassNameSet());
 
   // Perform final initialization (by default, initialize score calibration
   // parameters, if any).
-  RETURN_IF_ERROR(PostInit());
+  TFLITE_RETURN_IF_ERROR(PostInit());
 
   return absl::OkStatus();
 }
@@ -177,7 +177,7 @@ absl::Status ImageClassifier::CheckAndSetOutputs() {
       const tflite::TensorMetadata* output_tensor =
           output_tensor_metadata->Get(i);
 
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           ClassificationHead head,
           BuildClassificationHead(*metadata_extractor, *output_tensor,
                                   options_->display_names_locale()));
@@ -364,7 +364,7 @@ absl::Status ImageClassifier::InitScoreCalibrations() {
           StatusCode::kInternal, "Could not create score calibration object.");
     }
 
-    RETURN_IF_ERROR(score_calibrations_[i]->InitializeFromParameters(
+    TFLITE_RETURN_IF_ERROR(score_calibrations_[i]->InitializeFromParameters(
         classification_heads_[i].calibration_params.value()));
   }
 
@@ -407,7 +407,7 @@ StatusOr<ClassificationResult> ImageClassifier::Postprocess(
 
     const TfLiteTensor* output_tensor = output_tensors[i];
     if (has_uint8_outputs_) {
-      ASSIGN_OR_RETURN(const uint8* output_data,
+      TFLITE_ASSIGN_OR_RETURN(const uint8* output_data,
                        AssertAndReturnTypedTensor<uint8>(output_tensor));
       for (int j = 0; j < head.label_map_items.size(); ++j) {
         score_pairs.emplace_back(j, output_tensor->params.scale *
@@ -415,7 +415,7 @@ StatusOr<ClassificationResult> ImageClassifier::Postprocess(
                                          output_tensor->params.zero_point));
       }
     } else {
-      ASSIGN_OR_RETURN(const float* output_data,
+      TFLITE_ASSIGN_OR_RETURN(const float* output_data,
                        AssertAndReturnTypedTensor<float>(output_tensor));
       for (int j = 0; j < head.label_map_items.size(); ++j) {
         score_pairs.emplace_back(j, output_data[j]);
@@ -501,7 +501,7 @@ StatusOr<ClassificationResult> ImageClassifier::Postprocess(
     }
   }
 
-  RETURN_IF_ERROR(FillResultsFromLabelMaps(&result));
+  TFLITE_RETURN_IF_ERROR(FillResultsFromLabelMaps(&result));
 
   return result;
 }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_embedder.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_embedder.cc
index 0ce46fb9f9806..d24daeac9b61d 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_embedder.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_embedder.cc
@@ -62,13 +62,13 @@ ImageEmbedder::CreateFromOptions(const ImageEmbedderOptions& options,
   // Copy options to ensure the ExternalFile-s outlive the constructed object.
   auto options_copy = absl::make_unique<ImageEmbedderOptions>(options);
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       auto image_embedder,
       TaskAPIFactory::CreateFromExternalFileProto<ImageEmbedder>(
           &options_copy->model_file_with_metadata(), std::move(resolver),
           options_copy->num_threads(), options_copy->compute_settings()));
 
-  RETURN_IF_ERROR(image_embedder->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(image_embedder->Init(std::move(options_copy)));
 
   return image_embedder;
 }
@@ -89,19 +89,19 @@ absl::Status ImageEmbedder::Init(
   options_ = std::move(options);
 
   // Perform pre-initialization actions.
-  RETURN_IF_ERROR(PreInit());
+  TFLITE_RETURN_IF_ERROR(PreInit());
 
   // Sanity check and set inputs and outputs.
-  RETURN_IF_ERROR(CheckAndSetInputs());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetInputs());
 
   // Perform post-initialization actions.
-  RETURN_IF_ERROR(PostInit());
+  TFLITE_RETURN_IF_ERROR(PostInit());
 
   // ImageEmbedder assumes that all output tensors share the same
   // embedding option.
   postprocessors_.reserve(GetTfLiteEngine()->interpreter()->outputs().size());
   for (int i = 0; i < GetTfLiteEngine()->interpreter()->outputs().size(); i++) {
-    ASSIGN_OR_RETURN(auto processor,
+    TFLITE_ASSIGN_OR_RETURN(auto processor,
                      CreatePostprocessor(GetTfLiteEngine(), {i}, *options_));
     postprocessors_.emplace_back(std::move(processor));
   }
@@ -127,7 +127,7 @@ tflite::support::StatusOr<EmbeddingResult> ImageEmbedder::Postprocess(
     const FrameBuffer& /*frame_buffer*/, const BoundingBox& /*roi*/) {
   EmbeddingResult result;
   for (int i = 0; i < postprocessors_.size(); ++i) {
-    RETURN_IF_ERROR(
+    TFLITE_RETURN_IF_ERROR(
         postprocessors_.at(i)->Postprocess(result.add_embeddings()));
   }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_searcher.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_searcher.cc
index fb8bdf4f36446..6b577cd961f61 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_searcher.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_searcher.cc
@@ -56,11 +56,11 @@ StatusOr<std::unique_ptr<ImageSearcher>> ImageSearcher::CreateFromOptions(
   // Copy options to ensure the ExternalFile-s outlive the constructed object.
   auto options_copy = absl::make_unique<ImageSearcherOptions>(options);
 
-  ASSIGN_OR_RETURN(auto image_searcher,
+  TFLITE_ASSIGN_OR_RETURN(auto image_searcher,
                    TaskAPIFactory::CreateFromBaseOptions<ImageSearcher>(
                        &options_copy->base_options(), std::move(resolver)));
 
-  RETURN_IF_ERROR(image_searcher->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(image_searcher->Init(std::move(options_copy)));
 
   return image_searcher;
 }
@@ -75,13 +75,13 @@ absl::Status ImageSearcher::Init(
   options_ = std::move(options);
 
   // Perform pre-initialization actions.
-  RETURN_IF_ERROR(PreInit());
+  TFLITE_RETURN_IF_ERROR(PreInit());
 
   // Sanity check and set inputs.
-  RETURN_IF_ERROR(CheckAndSetInputs());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetInputs());
 
   // Create post-processor.
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       postprocessor_,
       SearchPostprocessor::Create(GetTfLiteEngine(), 0,
                                   std::make_unique<processor::SearchOptions>(
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_segmenter.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_segmenter.cc
index c9dad866f1a68..8bef73b9759ff 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_segmenter.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_segmenter.cc
@@ -117,7 +117,7 @@ StatusOr<std::vector<LabelMapItem>> GetLabelMapIfAny(
   if (labels_filename.empty()) {
     return std::vector<LabelMapItem>();
   }
-  ASSIGN_OR_RETURN(absl::string_view labels_file,
+  TFLITE_ASSIGN_OR_RETURN(absl::string_view labels_file,
                    metadata_extractor.GetAssociatedFile(labels_filename));
   const std::string display_names_filename =
       ModelMetadataExtractor::FindFirstAssociatedFileName(
@@ -125,7 +125,7 @@ StatusOr<std::vector<LabelMapItem>> GetLabelMapIfAny(
           locale);
   absl::string_view display_names_file = {};
   if (!display_names_filename.empty()) {
-    ASSIGN_OR_RETURN(display_names_file, metadata_extractor.GetAssociatedFile(
+    TFLITE_ASSIGN_OR_RETURN(display_names_file, metadata_extractor.GetAssociatedFile(
                                              display_names_filename));
   }
   return BuildLabelMapFromFiles(labels_file, display_names_file);
@@ -164,20 +164,20 @@ absl::Status ImageSegmenter::SanityCheckOptions(
 StatusOr<std::unique_ptr<ImageSegmenter>> ImageSegmenter::CreateFromOptions(
     const ImageSegmenterOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
   // Copy options to ensure the ExternalFile outlives the constructed object.
   auto options_copy = absl::make_unique<ImageSegmenterOptions>(options);
 
   std::unique_ptr<ImageSegmenter> image_segmenter;
   if (options_copy->has_model_file_with_metadata()) {
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         image_segmenter,
         TaskAPIFactory::CreateFromExternalFileProto<ImageSegmenter>(
             &options_copy->model_file_with_metadata(), std::move(resolver),
             options_copy->num_threads(), options_copy->compute_settings()));
   } else if (options_copy->base_options().has_model_file()) {
-    ASSIGN_OR_RETURN(image_segmenter,
+    TFLITE_ASSIGN_OR_RETURN(image_segmenter,
                      TaskAPIFactory::CreateFromBaseOptions<ImageSegmenter>(
                          &options_copy->base_options(), std::move(resolver)));
   } else {
@@ -189,7 +189,7 @@ StatusOr<std::unique_ptr<ImageSegmenter>> ImageSegmenter::CreateFromOptions(
         TfLiteSupportStatus::kInvalidArgumentError);
   }
 
-  RETURN_IF_ERROR(image_segmenter->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(image_segmenter->Init(std::move(options_copy)));
 
   return image_segmenter;
 }
@@ -201,14 +201,14 @@ absl::Status ImageSegmenter::Init(
 
   // Perform pre-initialization actions (by default, sets the process engine for
   // image pre-processing to kLibyuv as a sane default).
-  RETURN_IF_ERROR(PreInit());
+  TFLITE_RETURN_IF_ERROR(PreInit());
 
   // Sanity check and set inputs and outputs.
-  RETURN_IF_ERROR(CheckAndSetInputs());
-  RETURN_IF_ERROR(CheckAndSetOutputs());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetInputs());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetOutputs());
 
   // Initialize colored_labels_ once and for all.
-  RETURN_IF_ERROR(InitColoredLabels());
+  TFLITE_RETURN_IF_ERROR(InitColoredLabels());
 
   return absl::OkStatus();
 }
@@ -288,7 +288,7 @@ absl::Status ImageSegmenter::CheckAndSetOutputs() {
                           output_tensor_metadata->size()),
           TfLiteSupportStatus::kMetadataInconsistencyError);
     }
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         label_map_,
         GetLabelMapIfAny(*metadata_extractor, *output_tensor_metadata->Get(0),
                          options_->display_names_locale()));
@@ -391,7 +391,7 @@ StatusOr<SegmentationResult> ImageSegmenter::Postprocess(
         int class_index = 0;
         float max_confidence = 0.0f;
         for (int d = 0; d < output_depth_; ++d) {
-          ASSIGN_OR_RETURN(
+          TFLITE_ASSIGN_OR_RETURN(
               const float confidence,
               GetOutputConfidence(*output_tensor, tensor_x, tensor_y, d));
           if (confidence > max_confidence) {
@@ -419,7 +419,7 @@ StatusOr<SegmentationResult> ImageSegmenter::Postprocess(
                           /*to_x=*/&tensor_x,
                           /*to_y=*/&tensor_y);
         for (int d = 0; d < output_depth_; ++d) {
-          ASSIGN_OR_RETURN(
+          TFLITE_ASSIGN_OR_RETURN(
               float confidence,
               GetOutputConfidence(*output_tensor, tensor_x, tensor_y, d));
           confidence_masks->mutable_confidence_mask(d)->add_value(confidence);
@@ -435,12 +435,12 @@ StatusOr<float> ImageSegmenter::GetOutputConfidence(
     const TfLiteTensor& output_tensor, int x, int y, int depth) {
   int index = output_width_ * output_depth_ * y + output_depth_ * x + depth;
   if (has_uint8_outputs_) {
-    ASSIGN_OR_RETURN(const uint8* data,
+    TFLITE_ASSIGN_OR_RETURN(const uint8* data,
                      AssertAndReturnTypedTensor<uint8>(&output_tensor));
     return output_tensor.params.scale *
            (static_cast<int>(data[index]) - output_tensor.params.zero_point);
   } else {
-    ASSIGN_OR_RETURN(const float* data,
+    TFLITE_ASSIGN_OR_RETURN(const float* data,
                      AssertAndReturnTypedTensor<float>(&output_tensor));
     return data[index];
   }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/object_detector.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/object_detector.cc
index 0a4d5f7553ee9..a8c221a6dac64 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/object_detector.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/object_detector.cc
@@ -148,7 +148,7 @@ StatusOr<std::vector<LabelMapItem>> GetLabelMapIfAny(
   if (labels_filename.empty()) {
     return std::vector<LabelMapItem>();
   }
-  ASSIGN_OR_RETURN(absl::string_view labels_file,
+  TFLITE_ASSIGN_OR_RETURN(absl::string_view labels_file,
                    metadata_extractor.GetAssociatedFile(labels_filename));
   const std::string display_names_filename =
       ModelMetadataExtractor::FindFirstAssociatedFileName(
@@ -156,7 +156,7 @@ StatusOr<std::vector<LabelMapItem>> GetLabelMapIfAny(
           locale);
   absl::string_view display_names_file;
   if (!display_names_filename.empty()) {
-    ASSIGN_OR_RETURN(display_names_file, metadata_extractor.GetAssociatedFile(
+    TFLITE_ASSIGN_OR_RETURN(display_names_file, metadata_extractor.GetAssociatedFile(
                                              display_names_filename));
   }
   return BuildLabelMapFromFiles(labels_file, display_names_file);
@@ -165,7 +165,7 @@ StatusOr<std::vector<LabelMapItem>> GetLabelMapIfAny(
 StatusOr<float> GetScoreThreshold(
     const ModelMetadataExtractor& metadata_extractor,
     const TensorMetadata& tensor_metadata) {
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       const ProcessUnit* score_thresholding_process_unit,
       metadata_extractor.FindFirstProcessUnit(
           tensor_metadata, ProcessUnitOptions_ScoreThresholdingOptions));
@@ -225,7 +225,7 @@ absl::Status SanityCheckOutputTensors(
             num_results_tensor->dims->data[0]));
   }
 
-  ASSIGN_OR_RETURN(float* num_results_data,
+  TFLITE_ASSIGN_OR_RETURN(float* num_results_data,
                    AssertAndReturnTypedTensor<float>(num_results_tensor));
   int num_results = static_cast<int>(num_results_data[0]);
 
@@ -312,20 +312,20 @@ absl::Status ObjectDetector::SanityCheckOptions(
 StatusOr<std::unique_ptr<ObjectDetector>> ObjectDetector::CreateFromOptions(
     const ObjectDetectorOptions& options,
     std::unique_ptr<tflite::OpResolver> resolver) {
-  RETURN_IF_ERROR(SanityCheckOptions(options));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
   // Copy options to ensure the ExternalFile outlives the constructed object.
   auto options_copy = absl::make_unique<ObjectDetectorOptions>(options);
 
   std::unique_ptr<ObjectDetector> object_detector;
   if (options_copy->has_model_file_with_metadata()) {
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         object_detector,
         TaskAPIFactory::CreateFromExternalFileProto<ObjectDetector>(
             &options_copy->model_file_with_metadata(), std::move(resolver),
             options_copy->num_threads(), options_copy->compute_settings()));
   } else if (options_copy->base_options().has_model_file()) {
-    ASSIGN_OR_RETURN(object_detector,
+    TFLITE_ASSIGN_OR_RETURN(object_detector,
                      TaskAPIFactory::CreateFromBaseOptions<ObjectDetector>(
                          &options_copy->base_options(), std::move(resolver)));
   } else {
@@ -337,7 +337,7 @@ StatusOr<std::unique_ptr<ObjectDetector>> ObjectDetector::CreateFromOptions(
         TfLiteSupportStatus::kInvalidArgumentError);
   }
 
-  RETURN_IF_ERROR(object_detector->Init(std::move(options_copy)));
+  TFLITE_RETURN_IF_ERROR(object_detector->Init(std::move(options_copy)));
 
   return object_detector;
 }
@@ -349,18 +349,18 @@ absl::Status ObjectDetector::Init(
 
   // Perform pre-initialization actions (by default, sets the process engine for
   // image pre-processing to kLibyuv as a sane default).
-  RETURN_IF_ERROR(PreInit());
+  TFLITE_RETURN_IF_ERROR(PreInit());
 
   // Sanity check and set inputs and outputs.
-  RETURN_IF_ERROR(CheckAndSetInputs());
-  RETURN_IF_ERROR(CheckAndSetOutputs());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetInputs());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetOutputs());
 
   // Initialize class whitelisting/blacklisting, if any.
-  RETURN_IF_ERROR(CheckAndSetClassIndexSet());
+  TFLITE_RETURN_IF_ERROR(CheckAndSetClassIndexSet());
 
   // Perform final initialization (by default, initialize score calibration
   // parameters, if any).
-  RETURN_IF_ERROR(PostInit());
+  TFLITE_RETURN_IF_ERROR(PostInit());
 
   return absl::OkStatus();
 }
@@ -386,7 +386,7 @@ StatusOr<SigmoidCalibrationParameters> BuildCalibrationParametersIfAny(
   // that does sanity checks and builds sigmoid calibration params in:
   //   https://github.com/tensorflow/tflite-support/blob/64e044408f3d3654de7fc10bca401ed900649ca3/tensorflow_lite_support/cc/task/vision/core/classification_head.cc#L75-L107
   // Consider to refactor it and reuse the same function.
-  ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_calibration_process_unit,
+  TFLITE_ASSIGN_OR_RETURN(const tflite::ProcessUnit* score_calibration_process_unit,
                    ModelMetadataExtractor::FindFirstProcessUnit(
                        output_tensor_metadata,
                        tflite::ProcessUnitOptions_ScoreCalibrationOptions));
@@ -395,12 +395,12 @@ StatusOr<SigmoidCalibrationParameters> BuildCalibrationParametersIfAny(
         ModelMetadataExtractor::FindFirstAssociatedFileName(
             output_tensor_metadata,
             tflite::AssociatedFileType_TENSOR_AXIS_SCORE_CALIBRATION);
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         absl::string_view score_calibration_file,
         metadata_extractor.GetAssociatedFile(score_calibration_filename));
 
     // Set has_score_calibration to true, only if sigmoid_params is built.
-    ASSIGN_OR_RETURN(sigmoid_params,
+    TFLITE_ASSIGN_OR_RETURN(sigmoid_params,
                      BuildSigmoidCalibrationParams(
                          *score_calibration_process_unit
                               ->options_as_ScoreCalibrationOptions(),
@@ -421,7 +421,7 @@ absl::Status ObjectDetector::InitScoreCalibrations() {
       output_tensor_metadata = metadata_extractor->GetOutputTensorMetadata();
   const tflite::TensorMetadata* output_tensor =
       output_tensor_metadata->Get(kDefaultScoresIndex);
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       auto calibration_params,
       BuildCalibrationParametersIfAny(*metadata_extractor, *output_tensor,
                                       label_map_, &has_score_calibration));
@@ -436,7 +436,7 @@ absl::Status ObjectDetector::InitScoreCalibrations() {
     return CreateStatusWithPayload(
         StatusCode::kInternal, "Could not create score calibration object.");
   }
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       score_calibration_->InitializeFromParameters(calibration_params));
   return absl::OkStatus();
 }
@@ -485,7 +485,7 @@ absl::Status ObjectDetector::CheckAndSetOutputs() {
 
   // Extract mandatory BoundingBoxProperties for easier access at
   // post-processing time, performing sanity checks on the fly.
-  ASSIGN_OR_RETURN(const BoundingBoxProperties* bounding_box_properties,
+  TFLITE_ASSIGN_OR_RETURN(const BoundingBoxProperties* bounding_box_properties,
                    GetBoundingBoxProperties(
                        *output_tensors_metadata->Get(output_indices_[0])));
   if (bounding_box_properties->index() == nullptr) {
@@ -501,7 +501,7 @@ absl::Status ObjectDetector::CheckAndSetOutputs() {
   }
 
   // Build label map (if available) from metadata.
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       label_map_,
       GetLabelMapIfAny(*metadata_extractor,
                        *output_tensors_metadata->Get(output_indices_[1]),
@@ -511,7 +511,7 @@ absl::Status ObjectDetector::CheckAndSetOutputs() {
   if (options_->has_score_threshold()) {
     score_threshold_ = options_->score_threshold();
   } else {
-    ASSIGN_OR_RETURN(
+    TFLITE_ASSIGN_OR_RETURN(
         score_threshold_,
         GetScoreThreshold(*metadata_extractor,
                           *output_tensors_metadata->Get(output_indices_[2])));
@@ -603,10 +603,10 @@ StatusOr<DetectionResult> ObjectDetector::Postprocess(
   // Most of the checks here should never happen, as outputs have been validated
   // at construction time. Checking nonetheless and returning internal errors if
   // something bad happens.
-  RETURN_IF_ERROR(SanityCheckOutputTensors(output_tensors, output_indices_));
+  TFLITE_RETURN_IF_ERROR(SanityCheckOutputTensors(output_tensors, output_indices_));
 
   // Get number of available results.
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       float* num_results_data,
       AssertAndReturnTypedTensor<float>(output_tensors[output_indices_[3]]));
   const int num_results = static_cast<int>(num_results_data[0]);
@@ -623,13 +623,13 @@ StatusOr<DetectionResult> ObjectDetector::Postprocess(
     upright_input_frame_dimensions.Swap();
   }
 
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       const float* locations,
       AssertAndReturnTypedTensor<float>(output_tensors[output_indices_[0]]));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       const float* classes,
       AssertAndReturnTypedTensor<float>(output_tensors[output_indices_[1]]));
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       const float* scores,
       AssertAndReturnTypedTensor<float>(output_tensors[output_indices_[2]]));
   DetectionResult results;
@@ -671,7 +671,7 @@ StatusOr<DetectionResult> ObjectDetector::Postprocess(
   }
 
   if (!label_map_.empty()) {
-    RETURN_IF_ERROR(FillResultsFromLabelMap(&results));
+    TFLITE_RETURN_IF_ERROR(FillResultsFromLabelMap(&results));
   }
 
   return results;
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/frame_buffer_common_utils.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/frame_buffer_common_utils.cc
index 1854cf546d599..e12700079f601 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/frame_buffer_common_utils.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/frame_buffer_common_utils.cc
@@ -120,7 +120,7 @@ StatusOr<const uint8*> GetUvRawBuffer(const FrameBuffer& buffer) {
     return absl::InvalidArgumentError(
         "Only support getting biplanar UV buffer from NV12/NV21 frame buffer.");
   }
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData yuv_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData yuv_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
   const uint8* uv_buffer = buffer.format() == FrameBuffer::Format::kNV12
                                ? yuv_data.u_buffer
@@ -192,8 +192,8 @@ absl::Status ValidateBufferFormat(const FrameBuffer& buffer) {
 
 absl::Status ValidateBufferFormats(const FrameBuffer& buffer1,
                                    const FrameBuffer& buffer2) {
-  RETURN_IF_ERROR(ValidateBufferFormat(buffer1));
-  RETURN_IF_ERROR(ValidateBufferFormat(buffer2));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferFormat(buffer1));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferFormat(buffer2));
   return absl::OkStatus();
 }
 
@@ -391,7 +391,7 @@ StatusOr<std::unique_ptr<FrameBuffer>> CreateFromRawBuffer(
       return CreateFromOnePlaneNVRawBuffer(buffer, dimension, target_format,
                                            orientation, timestamp);
     case FrameBuffer::Format::kYV12: {
-      ASSIGN_OR_RETURN(const FrameBuffer::Dimension uv_dimension,
+      TFLITE_ASSIGN_OR_RETURN(const FrameBuffer::Dimension uv_dimension,
                        GetUvPlaneDimension(dimension, target_format));
       return CreateFromYuvRawBuffer(
           /*y_plane=*/buffer,
@@ -401,7 +401,7 @@ StatusOr<std::unique_ptr<FrameBuffer>> CreateFromRawBuffer(
           /*pixel_stride_uv=*/1, orientation, timestamp);
     }
     case FrameBuffer::Format::kYV21: {
-      ASSIGN_OR_RETURN(const FrameBuffer::Dimension uv_dimension,
+      TFLITE_ASSIGN_OR_RETURN(const FrameBuffer::Dimension uv_dimension,
                        GetUvPlaneDimension(dimension, target_format));
       return CreateFromYuvRawBuffer(
           /*y_plane=*/buffer, /*u_plane=*/buffer + dimension.Size(),
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/frame_buffer_utils.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/frame_buffer_utils.cc
index 9298c60395286..653ff01f331ef 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/frame_buffer_utils.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/frame_buffer_utils.cc
@@ -398,22 +398,22 @@ absl::Status FrameBufferUtils::Execute(const FrameBuffer& buffer,
                                        FrameBuffer* output_buffer) {
   if (absl::holds_alternative<CropResizeOperation>(operation)) {
     const auto& params = absl::get<CropResizeOperation>(operation);
-    RETURN_IF_ERROR(
+    TFLITE_RETURN_IF_ERROR(
         Crop(buffer, params.crop_origin_x, params.crop_origin_y,
              (params.crop_dimension.width + params.crop_origin_x - 1),
              (params.crop_dimension.height + params.crop_origin_y - 1),
              output_buffer));
   } else if (absl::holds_alternative<UniformCropResizeOperation>(operation)) {
     const auto& params = absl::get<UniformCropResizeOperation>(operation);
-    RETURN_IF_ERROR(
+    TFLITE_RETURN_IF_ERROR(
         Crop(buffer, params.crop_origin_x, params.crop_origin_y,
              (params.crop_dimension.width + params.crop_origin_x - 1),
              (params.crop_dimension.height + params.crop_origin_y - 1),
              output_buffer));
   } else if (absl::holds_alternative<ConvertOperation>(operation)) {
-    RETURN_IF_ERROR(Convert(buffer, output_buffer));
+    TFLITE_RETURN_IF_ERROR(Convert(buffer, output_buffer));
   } else if (absl::holds_alternative<OrientOperation>(operation)) {
-    RETURN_IF_ERROR(Orient(buffer, output_buffer));
+    TFLITE_RETURN_IF_ERROR(Orient(buffer, output_buffer));
   } else {
     return absl::UnimplementedError(absl::StrFormat(
         "FrameBufferOperation %i is not supported.", operation.index()));
@@ -494,7 +494,7 @@ absl::Status FrameBufferUtils::Orient(const FrameBuffer& buffer,
                 output_buffer->format()),
       output_buffer->dimension(), buffer.format(), buffer.orientation());
 
-  RETURN_IF_ERROR(utils_->Rotate(buffer, params.rotation_angle_deg,
+  TFLITE_RETURN_IF_ERROR(utils_->Rotate(buffer, params.rotation_angle_deg,
                                  tmp_frame_buffer.get()));
   if (params.flip == OrientParams::FlipType::kHorizontal) {
     return utils_->FlipHorizontally(*tmp_frame_buffer, output_buffer);
@@ -578,7 +578,7 @@ absl::Status FrameBufferUtils::Execute(
       temp_frame_buffer = FrameBuffer(planes, new_size, new_format,
                                       new_orientation, buffer.timestamp());
     }
-    RETURN_IF_ERROR(Execute(input_frame_buffer, operation, &temp_frame_buffer));
+    TFLITE_RETURN_IF_ERROR(Execute(input_frame_buffer, operation, &temp_frame_buffer));
   }
   return absl::OkStatus();
 }
@@ -652,9 +652,9 @@ absl::Status FrameBufferUtils::Preprocess(
   // Execute the processing pipeline.
   if (frame_buffer_operations.empty()) {
     // Using resize to perform copy.
-    RETURN_IF_ERROR(Resize(buffer, output_buffer));
+    TFLITE_RETURN_IF_ERROR(Resize(buffer, output_buffer));
   } else {
-    RETURN_IF_ERROR(Execute(buffer, frame_buffer_operations, output_buffer));
+    TFLITE_RETURN_IF_ERROR(Execute(buffer, frame_buffer_operations, output_buffer));
   }
   return absl::OkStatus();
 }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/image_tensor_specs.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/image_tensor_specs.cc
index 392df5e40c662..b0355a2b69e26 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/image_tensor_specs.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/image_tensor_specs.cc
@@ -90,7 +90,7 @@ StatusOr<const ImageProperties*> GetImagePropertiesIfAny(
 
 StatusOr<absl::optional<NormalizationOptions>> GetNormalizationOptionsIfAny(
     const TensorMetadata& tensor_metadata) {
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       const tflite::ProcessUnit* normalization_process_unit,
       ModelMetadataExtractor::FindFirstProcessUnit(
           tensor_metadata, tflite::ProcessUnitOptions_NormalizationOptions));
@@ -140,14 +140,14 @@ StatusOr<absl::optional<NormalizationOptions>> GetNormalizationOptionsIfAny(
 StatusOr<ImageTensorSpecs> BuildInputImageTensorSpecs(
     const TfLiteEngine::Interpreter& interpreter,
     const tflite::metadata::ModelMetadataExtractor& metadata_extractor) {
-  ASSIGN_OR_RETURN(const TensorMetadata* metadata,
+  TFLITE_ASSIGN_OR_RETURN(const TensorMetadata* metadata,
                    GetInputTensorMetadataIfAny(metadata_extractor));
 
   const ImageProperties* props = nullptr;
   absl::optional<NormalizationOptions> normalization_options;
   if (metadata != nullptr) {
-    ASSIGN_OR_RETURN(props, GetImagePropertiesIfAny(*metadata));
-    ASSIGN_OR_RETURN(normalization_options,
+    TFLITE_ASSIGN_OR_RETURN(props, GetImagePropertiesIfAny(*metadata));
+    TFLITE_ASSIGN_OR_RETURN(normalization_options,
                      GetNormalizationOptionsIfAny(*metadata));
   }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/image_utils.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/image_utils.cc
index 0a0b1b93423fe..c9910c0073d05 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/image_utils.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/image_utils.cc
@@ -63,7 +63,7 @@ StatusOr<ImageData> DecodeImageFromFile(const std::string& file_name) {
   image_data.pixel_data = stbi_load(file_name.c_str(), &image_data.width,
                                     &image_data.height, &image_data.channels,
                                     /*desired_channels=*/0);
-  RETURN_IF_ERROR(CheckImageData(image_data));
+  TFLITE_RETURN_IF_ERROR(CheckImageData(image_data));
   return image_data;
 }
 
@@ -73,7 +73,7 @@ tflite::support::StatusOr<ImageData> DecodeImageFromBuffer(
   image_data.pixel_data = stbi_load_from_memory(
       buffer, len, &image_data.width, &image_data.height, &image_data.channels,
       /*desired_channels=*/0);
-  RETURN_IF_ERROR(CheckImageData(image_data));
+  TFLITE_RETURN_IF_ERROR(CheckImageData(image_data));
   return image_data;
 }
 
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/libyuv_frame_buffer_utils.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/libyuv_frame_buffer_utils.cc
index 623326d5cba49..f697ab800cb12 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/libyuv_frame_buffer_utils.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/libyuv_frame_buffer_utils.cc
@@ -47,7 +47,7 @@ namespace {
 // Supported output format includes RGB24 and YV21.
 absl::Status ConvertFromNv12(const FrameBuffer& buffer,
                              FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData yuv_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData yuv_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
   switch (output_buffer->format()) {
     case FrameBuffer::Format::kRGB: {
@@ -83,7 +83,7 @@ absl::Status ConvertFromNv12(const FrameBuffer& buffer,
     }
     case FrameBuffer::Format::kYV12:
     case FrameBuffer::Format::kYV21: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
       int ret = libyuv::NV12ToI420(
           yuv_data.y_buffer, yuv_data.y_row_stride, yuv_data.u_buffer,
@@ -100,13 +100,13 @@ absl::Status ConvertFromNv12(const FrameBuffer& buffer,
       break;
     }
     case FrameBuffer::Format::kNV21: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
       libyuv::CopyPlane(yuv_data.y_buffer, yuv_data.y_row_stride,
                         const_cast<uint8*>(output_data.y_buffer),
                         output_data.y_row_stride, buffer.dimension().width,
                         buffer.dimension().height);
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           const FrameBuffer::Dimension uv_plane_dimension,
           GetUvPlaneDimension(buffer.dimension(), buffer.format()));
       libyuv::SwapUVPlane(yuv_data.u_buffer, yuv_data.uv_row_stride,
@@ -134,7 +134,7 @@ absl::Status ConvertFromNv12(const FrameBuffer& buffer,
 // Supported output format includes RGB24 and YV21.
 absl::Status ConvertFromNv21(const FrameBuffer& buffer,
                              FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData yuv_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData yuv_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
   switch (output_buffer->format()) {
     case FrameBuffer::Format::kRGB: {
@@ -170,7 +170,7 @@ absl::Status ConvertFromNv21(const FrameBuffer& buffer,
     }
     case FrameBuffer::Format::kYV12:
     case FrameBuffer::Format::kYV21: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
       int ret = libyuv::NV21ToI420(
           yuv_data.y_buffer, yuv_data.y_row_stride, yuv_data.v_buffer,
@@ -187,13 +187,13 @@ absl::Status ConvertFromNv21(const FrameBuffer& buffer,
       break;
     }
     case FrameBuffer::Format::kNV12: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
       libyuv::CopyPlane(yuv_data.y_buffer, yuv_data.y_row_stride,
                         const_cast<uint8*>(output_data.y_buffer),
                         output_data.y_row_stride, buffer.dimension().width,
                         buffer.dimension().height);
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           const FrameBuffer::Dimension uv_plane_dimension,
           GetUvPlaneDimension(buffer.dimension(), buffer.format()));
       libyuv::SwapUVPlane(yuv_data.v_buffer, yuv_data.uv_row_stride,
@@ -224,7 +224,7 @@ absl::Status ConvertFromNv21(const FrameBuffer& buffer,
 // Supported output format includes RGB24, NV12, and NV21.
 absl::Status ConvertFromYv(const FrameBuffer& buffer,
                            FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData yuv_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData yuv_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
   switch (output_buffer->format()) {
     case FrameBuffer::Format::kRGB: {
@@ -259,7 +259,7 @@ absl::Status ConvertFromYv(const FrameBuffer& buffer,
       break;
     }
     case FrameBuffer::Format::kNV12: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
       int ret = libyuv::I420ToNV12(
           yuv_data.y_buffer, yuv_data.y_row_stride, yuv_data.u_buffer,
@@ -275,7 +275,7 @@ absl::Status ConvertFromYv(const FrameBuffer& buffer,
       break;
     }
     case FrameBuffer::Format::kNV21: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
       int ret = libyuv::I420ToNV21(
           yuv_data.y_buffer, yuv_data.y_row_stride, yuv_data.u_buffer,
@@ -300,9 +300,9 @@ absl::Status ConvertFromYv(const FrameBuffer& buffer,
     }
     case FrameBuffer::Format::kYV12:
     case FrameBuffer::Format::kYV21: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_yuv_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_yuv_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           const FrameBuffer::Dimension uv_plane_dimension,
           GetUvPlaneDimension(buffer.dimension(), buffer.format()));
       libyuv::CopyPlane(yuv_data.y_buffer, yuv_data.y_row_stride,
@@ -333,9 +333,9 @@ absl::Status ConvertFromYv(const FrameBuffer& buffer,
 absl::Status ResizeYv(
     const FrameBuffer& buffer, FrameBuffer* output_buffer,
     libyuv::FilterMode interpolation = libyuv::FilterMode::kFilterBilinear) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
   // TODO(b/151217096): Choose the optimal image resizing filter to optimize
   // the model inference performance.
@@ -360,9 +360,9 @@ absl::Status ResizeYv(
 absl::Status ResizeNv(
     const FrameBuffer& buffer, FrameBuffer* output_buffer,
     libyuv::FilterMode interpolation = libyuv::FilterMode::kFilterBilinear) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
   const uint8* src_uv = input_data.u_buffer;
   const uint8* dst_uv = output_data.u_buffer;
@@ -391,7 +391,7 @@ absl::Status ResizeNv(
 // in `dest_argb`.
 absl::Status ConvertRgbToArgb(const FrameBuffer& buffer, uint8* dest_argb,
                               int dest_stride_argb) {
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
   if (buffer.format() != FrameBuffer::Format::kRGB) {
     return CreateStatusWithPayload(StatusCode::kInternal,
                                    "RGB input format is expected.",
@@ -428,7 +428,7 @@ absl::Status ConvertRgbToArgb(const FrameBuffer& buffer, uint8* dest_argb,
 // stores the conversion result in `output_buffer`.
 absl::Status ConvertArgbToRgb(uint8* src_argb, int src_stride_argb,
                               FrameBuffer* output_buffer) {
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
   if (output_buffer->format() != FrameBuffer::Format::kRGB) {
     return absl::InternalError("RGB input format is expected.");
   }
@@ -464,7 +464,7 @@ absl::Status ConvertArgbToRgb(uint8* src_argb, int src_stride_argb,
 // memory) format and stores the conversion result in `dest_argb`.
 absl::Status ConvertRgbaToArgb(const FrameBuffer& buffer, uint8* dest_argb,
                                int dest_stride_argb) {
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
   if (buffer.format() != FrameBuffer::Format::kRGBA) {
     return CreateStatusWithPayload(
         StatusCode::kInternal, "RGBA input format is expected.",
@@ -529,15 +529,15 @@ absl::Status ConvertFromRgb(const FrameBuffer& buffer,
         output_buffer->format() == FrameBuffer::Format::kNV21) {
       tmp_yuv_buffer = absl::make_unique<uint8[]>(
           GetFrameBufferByteSize(buffer.dimension(), output_buffer->format()));
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           yuv_frame_buffer,
           CreateFromRawBuffer(tmp_yuv_buffer.get(), buffer.dimension(),
                               FrameBuffer::Format::kYV21,
                               output_buffer->orientation()));
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           yuv_data, FrameBuffer::GetYuvDataFromFrameBuffer(*yuv_frame_buffer));
     } else {
-      ASSIGN_OR_RETURN(yuv_data,
+      TFLITE_ASSIGN_OR_RETURN(yuv_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
     }
     int ret = libyuv::RAWToI420(
@@ -592,7 +592,7 @@ absl::Status ConvertFromRgba(const FrameBuffer& buffer,
                                                     FrameBuffer::Format::kRGBA);
       auto argb_buffer = absl::make_unique<uint8[]>(argb_buffer_size);
       const int argb_row_bytes = buffer.dimension().width * kRgbaPixelBytes;
-      RETURN_IF_ERROR(
+      TFLITE_RETURN_IF_ERROR(
           ConvertRgbaToArgb(buffer, argb_buffer.get(), argb_row_bytes));
 
       // Convert ARGB to kGRAY
@@ -609,7 +609,7 @@ absl::Status ConvertFromRgba(const FrameBuffer& buffer,
       break;
     }
     case FrameBuffer::Format::kNV12: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
       int ret = libyuv::ABGRToNV12(
           buffer.plane(0).buffer, buffer.plane(0).stride.row_stride_bytes,
@@ -624,7 +624,7 @@ absl::Status ConvertFromRgba(const FrameBuffer& buffer,
       break;
     }
     case FrameBuffer::Format::kNV21: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
       int ret = libyuv::ABGRToNV21(
           buffer.plane(0).buffer, buffer.plane(0).stride.row_stride_bytes,
@@ -640,7 +640,7 @@ absl::Status ConvertFromRgba(const FrameBuffer& buffer,
     }
     case FrameBuffer::Format::kYV12:
     case FrameBuffer::Format::kYV21: {
-      ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+      TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                        FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
       int ret = libyuv::ABGRToI420(
           buffer.plane(0).buffer, buffer.plane(0).stride.row_stride_bytes,
@@ -729,7 +729,7 @@ absl::Status RotateRgb(const FrameBuffer& buffer, int angle_deg,
       GetFrameBufferByteSize(buffer.dimension(), FrameBuffer::Format::kRGBA);
   auto argb_buffer = absl::make_unique<uint8[]>(argb_buffer_size);
   const int argb_row_bytes = buffer.dimension().width * kRgbaPixelBytes;
-  RETURN_IF_ERROR(ConvertRgbToArgb(buffer, argb_buffer.get(), argb_row_bytes));
+  TFLITE_RETURN_IF_ERROR(ConvertRgbToArgb(buffer, argb_buffer.get(), argb_row_bytes));
 
   // Rotate ARGB
   auto argb_rotated_buffer = absl::make_unique<uint8[]>(argb_buffer_size);
@@ -776,9 +776,9 @@ absl::Status RotateGray(const FrameBuffer& buffer, int angle_deg,
 // Rotates YV12/YV21 frame buffer.
 absl::Status RotateYv(const FrameBuffer& buffer, int angle_deg,
                       FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
   int ret = libyuv::I420Rotate(
       input_data.y_buffer, input_data.y_row_stride, input_data.u_buffer,
@@ -807,19 +807,19 @@ absl::Status RotateNv(const FrameBuffer& buffer, int angle_deg,
                                    "kNV12 or kNV21 input formats are expected.",
                                    TfLiteSupportStatus::kImageProcessingError);
   }
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
   const int rotated_buffer_size = GetFrameBufferByteSize(
       output_buffer->dimension(), FrameBuffer::Format::kYV21);
   auto rotated_yuv_raw_buffer = absl::make_unique<uint8[]>(rotated_buffer_size);
-  ASSIGN_OR_RETURN(std::unique_ptr<FrameBuffer> rotated_yuv_buffer,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<FrameBuffer> rotated_yuv_buffer,
                    CreateFromRawBuffer(
                        rotated_yuv_raw_buffer.get(), output_buffer->dimension(),
                        /*target_format=*/FrameBuffer::Format::kYV21,
                        output_buffer->orientation()));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData rotated_yuv_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData rotated_yuv_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*rotated_yuv_buffer));
   // Get the first chroma plane and use it as the u plane. This is a workaround
   // for optimizing NV21 rotation. For NV12, the implementation is logical
@@ -875,7 +875,7 @@ absl::Status FlipPlaneVertically(const FrameBuffer& buffer,
         TfLiteSupportStatus::kImageProcessingError);
   }
 
-  ASSIGN_OR_RETURN(int pixel_stride, GetPixelStrides(buffer.format()));
+  TFLITE_ASSIGN_OR_RETURN(int pixel_stride, GetPixelStrides(buffer.format()));
 
   // Flip vertically is achieved by passing in negative height.
   libyuv::CopyPlane(buffer.plane(0).buffer,
@@ -899,7 +899,7 @@ absl::Status CropPlane(const FrameBuffer& buffer, int x0, int y0, int x1,
         TfLiteSupportStatus::kImageProcessingError);
   }
 
-  ASSIGN_OR_RETURN(int pixel_stride, GetPixelStrides(buffer.format()));
+  TFLITE_ASSIGN_OR_RETURN(int pixel_stride, GetPixelStrides(buffer.format()));
   FrameBuffer::Dimension crop_dimension = GetCropDimension(x0, x1, y0, y1);
 
   // Cropping is achieved by adjusting origin to (x0, y0).
@@ -919,9 +919,9 @@ absl::Status CropPlane(const FrameBuffer& buffer, int x0, int y0, int x1,
 // position (x0, y0) and the bottom right pixel position (x1, y1).
 absl::Status CropNv(const FrameBuffer& buffer, int x0, int y0, int x1, int y1,
                     FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
   // Crop Y plane by copying the buffer with the origin offset to (x0, y0).
   int crop_offset_y = input_data.y_row_stride * y0 + x0;
@@ -937,8 +937,8 @@ absl::Status CropNv(const FrameBuffer& buffer, int x0, int y0, int x1, int y1,
   // bounding box with odd X or Y starting positions.
   int crop_offset_chroma = input_data.uv_row_stride * (y0 / 2) +
                            input_data.uv_pixel_stride * (x0 / 2);
-  ASSIGN_OR_RETURN(const uint8* input_chroma_buffer, GetUvRawBuffer(buffer));
-  ASSIGN_OR_RETURN(const uint8* output_chroma_buffer,
+  TFLITE_ASSIGN_OR_RETURN(const uint8* input_chroma_buffer, GetUvRawBuffer(buffer));
+  TFLITE_ASSIGN_OR_RETURN(const uint8* output_chroma_buffer,
                    GetUvRawBuffer(*output_buffer));
   libyuv::CopyPlane(
       input_chroma_buffer + crop_offset_chroma, input_data.uv_row_stride,
@@ -951,9 +951,9 @@ absl::Status CropNv(const FrameBuffer& buffer, int x0, int y0, int x1, int y1,
 // position (x0, y0) and the bottom right pixel position (x1, y1).
 absl::Status CropYv(const FrameBuffer& buffer, int x0, int y0, int x1, int y1,
                     FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
   // Crop Y plane by copying the buffer with the origin offset to (x0, y0).
   int crop_offset_y = input_data.y_row_stride * y0 + x0;
@@ -964,7 +964,7 @@ absl::Status CropYv(const FrameBuffer& buffer, int x0, int y0, int x1, int y1,
       crop_dimension.width, crop_dimension.height);
   // Crop U plane by copying the buffer with the origin offset to
   // (x0 / 2, y0 / 2).
-  ASSIGN_OR_RETURN(const FrameBuffer::Dimension crop_uv_dimension,
+  TFLITE_ASSIGN_OR_RETURN(const FrameBuffer::Dimension crop_uv_dimension,
                    GetUvPlaneDimension(crop_dimension, buffer.format()));
   // TODO(b/152629712): Investigate the impact of color shifting caused by the
   // bounding box with odd X or Y starting positions.
@@ -1002,7 +1002,7 @@ absl::Status CropResizeYuv(const FrameBuffer& buffer, int x0, int y0, int x1,
             TfLiteSupportStatus::kImageProcessingError);
     }
   }
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
   // Cropping YUV planes by offsetting the origins of each plane.
   // TODO(b/152629712): Investigate the impact of color shifting caused by the
@@ -1119,7 +1119,7 @@ absl::Status ResizeRgb(
       GetFrameBufferByteSize(buffer.dimension(), FrameBuffer::Format::kRGBA);
   auto argb_buffer = absl::make_unique<uint8[]>(argb_buffer_size);
   const int argb_row_bytes = buffer.dimension().width * kRgbaPixelBytes;
-  RETURN_IF_ERROR(ConvertRgbToArgb(buffer, argb_buffer.get(), argb_row_bytes));
+  TFLITE_RETURN_IF_ERROR(ConvertRgbToArgb(buffer, argb_buffer.get(), argb_row_bytes));
 
   // Resize ARGB
   int resized_argb_buffer_size = GetFrameBufferByteSize(
@@ -1201,12 +1201,12 @@ absl::Status ResizeRgba(
 // Flips NV12/NV21 FrameBuffer horizontally.
 absl::Status FlipHorizontallyNv(const FrameBuffer& buffer,
                                 FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
-  ASSIGN_OR_RETURN(const uint8* input_chroma_buffer, GetUvRawBuffer(buffer));
-  ASSIGN_OR_RETURN(const uint8* output_chroma_buffer,
+  TFLITE_ASSIGN_OR_RETURN(const uint8* input_chroma_buffer, GetUvRawBuffer(buffer));
+  TFLITE_ASSIGN_OR_RETURN(const uint8* output_chroma_buffer,
                    GetUvRawBuffer(*output_buffer));
 
   int ret = libyuv::NV12Mirror(
@@ -1228,9 +1228,9 @@ absl::Status FlipHorizontallyNv(const FrameBuffer& buffer,
 // Flips YV12/YV21 FrameBuffer horizontally.
 absl::Status FlipHorizontallyYv(const FrameBuffer& buffer,
                                 FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
   int ret = libyuv::I420Mirror(
       input_data.y_buffer, input_data.y_row_stride, input_data.u_buffer,
@@ -1251,9 +1251,9 @@ absl::Status FlipHorizontallyYv(const FrameBuffer& buffer,
 // Flips NV12/NV21 FrameBuffer vertically.
 absl::Status FlipVerticallyNv(const FrameBuffer& buffer,
                               FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
   // Flip Y plane vertically by passing a negative height.
   libyuv::CopyPlane(input_data.y_buffer, input_data.y_row_stride,
@@ -1261,10 +1261,10 @@ absl::Status FlipVerticallyNv(const FrameBuffer& buffer,
                     output_data.y_row_stride, buffer.dimension().width,
                     -output_buffer->dimension().height);
   // Flip UV plane vertically by passing a negative height.
-  ASSIGN_OR_RETURN(const uint8* input_chroma_buffer, GetUvRawBuffer(buffer));
-  ASSIGN_OR_RETURN(const uint8* output_chroma_buffer,
+  TFLITE_ASSIGN_OR_RETURN(const uint8* input_chroma_buffer, GetUvRawBuffer(buffer));
+  TFLITE_ASSIGN_OR_RETURN(const uint8* output_chroma_buffer,
                    GetUvRawBuffer(*output_buffer));
-  ASSIGN_OR_RETURN(const FrameBuffer::Dimension uv_plane_dimension,
+  TFLITE_ASSIGN_OR_RETURN(const FrameBuffer::Dimension uv_plane_dimension,
                    GetUvPlaneDimension(buffer.dimension(), buffer.format()));
   libyuv::CopyPlane(
       input_chroma_buffer, input_data.uv_row_stride,
@@ -1276,9 +1276,9 @@ absl::Status FlipVerticallyNv(const FrameBuffer& buffer,
 // Flips NV12/NV21 FrameBuffer vertically.
 absl::Status FlipVerticallyYv(const FrameBuffer& buffer,
                               FrameBuffer* output_buffer) {
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData input_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(buffer));
-  ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
+  TFLITE_ASSIGN_OR_RETURN(FrameBuffer::YuvData output_data,
                    FrameBuffer::GetYuvDataFromFrameBuffer(*output_buffer));
   // Flip buffer vertically by passing a negative height.
   int ret = libyuv::I420Copy(
@@ -1326,7 +1326,7 @@ absl::Status CropResize(const FrameBuffer& buffer, int x0, int y0, int x1,
     return CropPlane(buffer, x0, y0, x1, y1, output_buffer);
   }
 
-  ASSIGN_OR_RETURN(int pixel_stride, GetPixelStrides(buffer.format()));
+  TFLITE_ASSIGN_OR_RETURN(int pixel_stride, GetPixelStrides(buffer.format()));
   // Cropping is achieved by adjusting origin to (x0, y0).
   int adjusted_offset =
       buffer.plane(0).stride.row_stride_bytes * y0 + x0 * pixel_stride;
@@ -1357,11 +1357,11 @@ absl::Status CropResize(const FrameBuffer& buffer, int x0, int y0, int x1,
 absl::Status LibyuvFrameBufferUtils::Crop(const FrameBuffer& buffer, int x0,
                                           int y0, int x1, int y1,
                                           FrameBuffer* output_buffer) {
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
+  TFLITE_RETURN_IF_ERROR(
       ValidateCropBufferInputs(buffer, *output_buffer, x0, y0, x1, y1));
-  RETURN_IF_ERROR(ValidateBufferFormats(buffer, *output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferFormats(buffer, *output_buffer));
 
   switch (buffer.format()) {
     case FrameBuffer::Format::kRGBA:
@@ -1383,7 +1383,7 @@ absl::Status LibyuvFrameBufferUtils::Crop(const FrameBuffer& buffer, int x0,
 
 absl::Status LibyuvFrameBufferUtils::Resize(const FrameBuffer& buffer,
                                             FrameBuffer* output_buffer) {
-  RETURN_IF_ERROR(ValidateResizeBufferInputs(buffer, *output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateResizeBufferInputs(buffer, *output_buffer));
   switch (buffer.format()) {
     case FrameBuffer::Format::kYV12:
     case FrameBuffer::Format::kYV21:
@@ -1407,7 +1407,7 @@ absl::Status LibyuvFrameBufferUtils::Resize(const FrameBuffer& buffer,
 
 absl::Status LibyuvFrameBufferUtils::ResizeNearestNeighbor(
     const FrameBuffer& buffer, FrameBuffer* output_buffer) {
-  RETURN_IF_ERROR(ValidateResizeBufferInputs(buffer, *output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateResizeBufferInputs(buffer, *output_buffer));
   switch (buffer.format()) {
     case FrameBuffer::Format::kYV12:
     case FrameBuffer::Format::kYV21:
@@ -1432,11 +1432,11 @@ absl::Status LibyuvFrameBufferUtils::ResizeNearestNeighbor(
 absl::Status LibyuvFrameBufferUtils::Rotate(const FrameBuffer& buffer,
                                             int angle_deg,
                                             FrameBuffer* output_buffer) {
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       ValidateRotateBufferInputs(buffer, *output_buffer, angle_deg));
-  RETURN_IF_ERROR(ValidateBufferFormats(buffer, *output_buffer));
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferFormats(buffer, *output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
 
   switch (buffer.format()) {
     case FrameBuffer::Format::kGRAY:
@@ -1461,10 +1461,10 @@ absl::Status LibyuvFrameBufferUtils::Rotate(const FrameBuffer& buffer,
 
 absl::Status LibyuvFrameBufferUtils::FlipHorizontally(
     const FrameBuffer& buffer, FrameBuffer* output_buffer) {
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
-  RETURN_IF_ERROR(ValidateFlipBufferInputs(buffer, *output_buffer));
-  RETURN_IF_ERROR(ValidateBufferFormats(buffer, *output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateFlipBufferInputs(buffer, *output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferFormats(buffer, *output_buffer));
 
   switch (buffer.format()) {
     case FrameBuffer::Format::kRGBA:
@@ -1489,10 +1489,10 @@ absl::Status LibyuvFrameBufferUtils::FlipHorizontally(
 
 absl::Status LibyuvFrameBufferUtils::FlipVertically(
     const FrameBuffer& buffer, FrameBuffer* output_buffer) {
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
-  RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
-  RETURN_IF_ERROR(ValidateFlipBufferInputs(buffer, *output_buffer));
-  RETURN_IF_ERROR(ValidateBufferFormats(buffer, *output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferPlaneMetadata(*output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateFlipBufferInputs(buffer, *output_buffer));
+  TFLITE_RETURN_IF_ERROR(ValidateBufferFormats(buffer, *output_buffer));
 
   switch (buffer.format()) {
     case FrameBuffer::Format::kRGBA:
@@ -1515,7 +1515,7 @@ absl::Status LibyuvFrameBufferUtils::FlipVertically(
 
 absl::Status LibyuvFrameBufferUtils::Convert(const FrameBuffer& buffer,
                                              FrameBuffer* output_buffer) {
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       ValidateConvertFormats(buffer.format(), output_buffer->format()));
   switch (buffer.format()) {
     case FrameBuffer::Format::kNV12:
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/score_calibration.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/score_calibration.cc
index f3cfc495ceb10..9e8bd33934867 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/score_calibration.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/utils/score_calibration.cc
@@ -231,7 +231,7 @@ StatusOr<SigmoidCalibrationParameters> BuildSigmoidCalibrationParams(
     if (lines[i].empty()) {
       continue;
     }
-    ASSIGN_OR_RETURN(Sigmoid sigmoid, SigmoidFromLabelAndLine(
+    TFLITE_ASSIGN_OR_RETURN(Sigmoid sigmoid, SigmoidFromLabelAndLine(
                                           label_map_items[i].name, lines[i]));
     sigmoid_vector.emplace_back(std::move(sigmoid));
   }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/processor/embedding_searcher_test.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/processor/embedding_searcher_test.cc
index 720cc00f60323..a70b5100a2ff3 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/processor/embedding_searcher_test.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/processor/embedding_searcher_test.cc
@@ -84,13 +84,13 @@ StatusOr<absl::string_view> GetIndexFileContentFromMetadata(
 StatusOr<std::string> GetIndexFileContentFromModelFile(
     const std::string& model_path) {
   auto engine = std::make_unique<core::TfLiteEngine>();
-  RETURN_IF_ERROR(engine->BuildModelFromFile(model_path));
+  TFLITE_RETURN_IF_ERROR(engine->BuildModelFromFile(model_path));
 
   const tflite::metadata::ModelMetadataExtractor* metadata_extractor =
       engine->metadata_extractor();
   const TensorMetadata* tensor_metadata =
       metadata_extractor->GetOutputTensorMetadata(0);
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       absl::string_view index_file_content,
       GetIndexFileContentFromMetadata(*metadata_extractor, *tensor_metadata));
 
@@ -103,7 +103,7 @@ StatusOr<std::string> GetIndexFileContentFromModelFile(
 StatusOr<std::string> GetFileContent(const std::string& file_path) {
   tflite::task::core::ExternalFile external_file;
   external_file.set_file_name(file_path);
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       auto handler,
       core::ExternalFileHandler::CreateFromExternalFile(&external_file));
   absl::string_view file_content = handler->GetFileContent();
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/image_classifier_test.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/image_classifier_test.cc
index 2ea2c578f0d40..8cc04ca191fdc 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/image_classifier_test.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/image_classifier_test.cc
@@ -556,16 +556,16 @@ class PostprocessTest : public tflite::testing::Test {
 
     static StatusOr<std::unique_ptr<TestImageClassifier>> CreateFromOptions(
         const ImageClassifierOptions& options) {
-      RETURN_IF_ERROR(SanityCheckOptions(options));
+      TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
       auto options_copy = absl::make_unique<ImageClassifierOptions>(options);
 
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           auto image_classifier,
           TaskAPIFactory::CreateFromExternalFileProto<TestImageClassifier>(
               &options_copy->model_file_with_metadata()));
 
-      RETURN_IF_ERROR(image_classifier->Init(std::move(options_copy)));
+      TFLITE_RETURN_IF_ERROR(image_classifier->Init(std::move(options_copy)));
 
       return image_classifier;
     }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/image_segmenter_test.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/image_segmenter_test.cc
index 712c9a3dead7e..1c49b3630f91c 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/image_segmenter_test.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/image_segmenter_test.cc
@@ -386,16 +386,16 @@ class PostprocessTest : public tflite::testing::Test {
 
     static StatusOr<std::unique_ptr<TestImageSegmenter>> CreateFromOptions(
         const ImageSegmenterOptions& options) {
-      RETURN_IF_ERROR(SanityCheckOptions(options));
+      TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
       auto options_copy = absl::make_unique<ImageSegmenterOptions>(options);
 
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           auto image_segmenter,
           TaskAPIFactory::CreateFromExternalFileProto<TestImageSegmenter>(
               &options_copy->model_file_with_metadata()));
 
-      RETURN_IF_ERROR(image_segmenter->Init(std::move(options_copy)));
+      TFLITE_RETURN_IF_ERROR(image_segmenter->Init(std::move(options_copy)));
 
       return image_segmenter;
     }
@@ -429,7 +429,7 @@ class PostprocessTest : public tflite::testing::Test {
     confidence_scores.resize(/*width*/ 257 *
                              /*height*/ 257 *
                              /*classes*/ 21);
-    RETURN_IF_ERROR(PopulateTensor(confidence_scores, output_tensor));
+    TFLITE_RETURN_IF_ERROR(PopulateTensor(confidence_scores, output_tensor));
 
     return output_tensor;
   }
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/object_detector_test.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/object_detector_test.cc
index 5bae0eefb4341..511b4ba338774 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/object_detector_test.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/test/task/vision/object_detector_test.cc
@@ -399,16 +399,16 @@ class PostprocessTest : public tflite::testing::Test {
 
     static StatusOr<std::unique_ptr<TestObjectDetector>> CreateFromOptions(
         const ObjectDetectorOptions& options) {
-      RETURN_IF_ERROR(SanityCheckOptions(options));
+      TFLITE_RETURN_IF_ERROR(SanityCheckOptions(options));
 
       auto options_copy = absl::make_unique<ObjectDetectorOptions>(options);
 
-      ASSIGN_OR_RETURN(
+      TFLITE_ASSIGN_OR_RETURN(
           auto object_detector,
           TaskAPIFactory::CreateFromExternalFileProto<TestObjectDetector>(
               &options_copy->model_file_with_metadata()));
 
-      RETURN_IF_ERROR(object_detector->Init(std::move(options_copy)));
+      TFLITE_RETURN_IF_ERROR(object_detector->Init(std::move(options_copy)));
 
       return object_detector;
     }
@@ -459,7 +459,7 @@ class PostprocessTest : public tflite::testing::Test {
         /*left=*/0.2, /*top=*/0.4, /*right=*/0.4, /*bottom=*/0.8};
     // Pad with zeros to fill the 10 locations.
     locations_data.resize(4 * 10);
-    RETURN_IF_ERROR(PopulateTensor(locations_data, locations));
+    TFLITE_RETURN_IF_ERROR(PopulateTensor(locations_data, locations));
     result.push_back(locations);
 
     TfLiteTensor* classes = output_tensors[1];
@@ -467,19 +467,19 @@ class PostprocessTest : public tflite::testing::Test {
                                        /*motorcycle*/ 3};
     // Pad with zeros to fill the 10 classes.
     classes_data.resize(10);
-    RETURN_IF_ERROR(PopulateTensor(classes_data, classes));
+    TFLITE_RETURN_IF_ERROR(PopulateTensor(classes_data, classes));
     result.push_back(classes);
 
     TfLiteTensor* scores = output_tensors[2];
     std::vector<float> scores_data = {0.8, 0.6, 0.4};
     // Pad with zeros to fill the 10 scores.
     scores_data.resize(10);
-    RETURN_IF_ERROR(PopulateTensor(scores_data, scores));
+    TFLITE_RETURN_IF_ERROR(PopulateTensor(scores_data, scores));
     result.push_back(scores);
 
     TfLiteTensor* num_results = output_tensors[3];
     std::vector<float> num_results_data = {10};
-    RETURN_IF_ERROR(PopulateTensor(num_results_data, num_results));
+    TFLITE_RETURN_IF_ERROR(PopulateTensor(num_results_data, num_results));
     result.push_back(num_results);
 
     return result;
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/text/tokenizers/tokenizer_utils.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/text/tokenizers/tokenizer_utils.cc
index bd4f18fca7f08..135de8e18f525 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/text/tokenizers/tokenizer_utils.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/text/tokenizers/tokenizer_utils.cc
@@ -48,7 +48,7 @@ StatusOr<absl::string_view> CheckAndLoadFirstAssociatedFile(
         "Invalid vocab_file from input process unit.",
         TfLiteSupportStatus::kMetadataInvalidTokenizerError);
   }
-  ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
+  TFLITE_ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
                    metadata_extractor->GetAssociatedFile(
                        associated_files->Get(0)->name()->str()));
   return vocab_buffer;
@@ -68,7 +68,7 @@ StatusOr<std::unique_ptr<Tokenizer>> CreateTokenizerFromProcessUnit(
     case ProcessUnitOptions_BertTokenizerOptions: {
       const tflite::BertTokenizerOptions* options =
           tokenizer_process_unit->options_as<tflite::BertTokenizerOptions>();
-      ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
+      TFLITE_ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
                        CheckAndLoadFirstAssociatedFile(options->vocab_file(),
                                                        metadata_extractor));
       return absl::make_unique<BertTokenizer>(vocab_buffer.data(),
@@ -83,7 +83,7 @@ StatusOr<std::unique_ptr<Tokenizer>> CreateTokenizerFromProcessUnit(
     case ProcessUnitOptions_RegexTokenizerOptions: {
       const tflite::RegexTokenizerOptions* options =
           tokenizer_process_unit->options_as<RegexTokenizerOptions>();
-      ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
+      TFLITE_ASSIGN_OR_RETURN(absl::string_view vocab_buffer,
                        CheckAndLoadFirstAssociatedFile(options->vocab_file(),
                                                        metadata_extractor));
       if (options->delim_regex_pattern() == nullptr) {
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/cc/utils/jni_utils.cc b/third_party/tflite_support/src/tensorflow_lite_support/cc/utils/jni_utils.cc
index 8508f89a5cd71..8bbc4892c1706 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/cc/utils/jni_utils.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/cc/utils/jni_utils.cc
@@ -99,7 +99,7 @@ tflite::support::StatusOr<Delegate> ConvertToProtoDelegate(jint delegate) {
     case 1:
       return Delegate::NNAPI;
     case 2:
-      RETURN_IF_ERROR(loadDelegatePluginLibrary("gpu"));
+      TFLITE_RETURN_IF_ERROR(loadDelegatePluginLibrary("gpu"));
       return Delegate::GPU;
     default:
       break;
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/custom_ops/kernel/sentencepiece/sentencepiece_detokenizer_op.cc b/third_party/tflite_support/src/tensorflow_lite_support/custom_ops/kernel/sentencepiece/sentencepiece_detokenizer_op.cc
index 273ccc8506811..a2939b0e95e4a 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/custom_ops/kernel/sentencepiece/sentencepiece_detokenizer_op.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/custom_ops/kernel/sentencepiece/sentencepiece_detokenizer_op.cc
@@ -31,11 +31,11 @@ REGISTER_OP("TFSentencepieceDetokenizeOp")
     .Output("output: string")
     .SetShapeFn([](tensorflow::shape_inference::InferenceContext* c) {
       shape_inference::ShapeHandle unused;
-      TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused));
-      TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused));
+      TF_TFLITE_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused));
+      TF_TFLITE_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &unused));
 
       shape_inference::DimensionHandle dim;
-      TF_RETURN_IF_ERROR(c->Subtract(c->NumElements(c->input(2)), 1, &dim));
+      TF_TFLITE_RETURN_IF_ERROR(c->Subtract(c->NumElements(c->input(2)), 1, &dim));
       c->set_output(0, c->Vector(dim));
       return OkStatus();
     });
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/custom_ops/kernel/sentencepiece/sentencepiece_tokenizer_op.cc b/third_party/tflite_support/src/tensorflow_lite_support/custom_ops/kernel/sentencepiece/sentencepiece_tokenizer_op.cc
index f922efa883775..7fd3442d9a791 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/custom_ops/kernel/sentencepiece/sentencepiece_tokenizer_op.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/custom_ops/kernel/sentencepiece/sentencepiece_tokenizer_op.cc
@@ -42,19 +42,19 @@ REGISTER_OP("TFSentencepieceTokenizeOp")
     .Output("output_splits: Tsplits")
     .SetShapeFn([](tensorflow::shape_inference::InferenceContext* c) {
       tensorflow::shape_inference::ShapeHandle unused;
-      TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused));
-      TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused));
-      TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused));
-      TF_RETURN_IF_ERROR(c->WithRank(c->input(4), 0, &unused));
-      TF_RETURN_IF_ERROR(c->WithRank(c->input(5), 0, &unused));
-      TF_RETURN_IF_ERROR(c->WithRank(c->input(6), 0, &unused));
+      TF_TFLITE_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &unused));
+      TF_TFLITE_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &unused));
+      TF_TFLITE_RETURN_IF_ERROR(c->WithRank(c->input(3), 0, &unused));
+      TF_TFLITE_RETURN_IF_ERROR(c->WithRank(c->input(4), 0, &unused));
+      TF_TFLITE_RETURN_IF_ERROR(c->WithRank(c->input(5), 0, &unused));
+      TF_TFLITE_RETURN_IF_ERROR(c->WithRank(c->input(6), 0, &unused));
 
       c->set_output(
           0, c->Vector(
                  tensorflow::shape_inference::InferenceContext::kUnknownDim));
 
       tensorflow::shape_inference::DimensionHandle num_splits;
-      TF_RETURN_IF_ERROR(c->Add(c->NumElements(c->input(1)), 1, &num_splits));
+      TF_TFLITE_RETURN_IF_ERROR(c->Add(c->NumElements(c->input(1)), 1, &num_splits));
       c->set_output(1, c->Vector(num_splits));
       return tensorflow::OkStatus();
     });
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/audio/desktop/audio_classifier_lib.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/audio/desktop/audio_classifier_lib.cc
index d739cb55f26a5..8ed0ea3d6955b 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/audio/desktop/audio_classifier_lib.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/audio/desktop/audio_classifier_lib.cc
@@ -41,7 +41,7 @@ tflite::support::StatusOr<AudioBuffer> LoadAudioBufferFromFile(
   uint32 decoded_sample_count;
   uint16 decoded_channel_count;
   uint32 decoded_sample_rate;
-  RETURN_IF_ERROR(DecodeLin16WaveAsFloatVector(
+  TFLITE_RETURN_IF_ERROR(DecodeLin16WaveAsFloatVector(
       contents, wav_data, offset, &decoded_sample_count, &decoded_channel_count,
       &decoded_sample_rate));
 
@@ -66,19 +66,19 @@ tflite::support::StatusOr<ClassificationResult> Classify(
         ->mutable_tflite_settings()
         ->set_delegate(::tflite::proto::Delegate::EDGETPU_CORAL);
   }
-  ASSIGN_OR_RETURN(std::unique_ptr<AudioClassifier> classifier,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<AudioClassifier> classifier,
                    AudioClassifier::CreateFromOptions(options));
 
   // `wav_data` holds data loaded from the file and needs to outlive `buffer`.
   std::vector<float> wav_data;
   uint32_t offset = 0;
   uint32_t buffer_size = classifier->GetRequiredInputBufferSize();
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       AudioBuffer buffer,
       LoadAudioBufferFromFile(wav_file, &buffer_size, &offset, &wav_data));
 
   auto start_classify = std::chrono::steady_clock::now();
-  ASSIGN_OR_RETURN(ClassificationResult result, classifier->Classify(buffer));
+  TFLITE_ASSIGN_OR_RETURN(ClassificationResult result, classifier->Classify(buffer));
   auto end_classify = std::chrono::steady_clock::now();
   std::string delegate = use_coral ? "Coral Edge TPU" : "CPU";
   const auto duration_ms =
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/bert_nl_classifier_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/bert_nl_classifier_demo.cc
index 02eed2332b2e4..e2d67030fe996 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/bert_nl_classifier_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/bert_nl_classifier_demo.cc
@@ -50,7 +50,7 @@ absl::Status Classify() {
         ->set_delegate(::tflite::proto::Delegate::EDGETPU_CORAL);
   }
 
-  ASSIGN_OR_RETURN(std::unique_ptr<BertNLClassifier> classifier,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<BertNLClassifier> classifier,
                    BertNLClassifier::CreateFromOptions(options));
 
   auto start_classify = steady_clock::now();
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/bert_question_answerer_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/bert_question_answerer_demo.cc
index 4eaa2bbbdd9f5..9cc347764364f 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/bert_question_answerer_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/bert_question_answerer_demo.cc
@@ -51,7 +51,7 @@ absl::Status Answer() {
         ->set_delegate(::tflite::proto::Delegate::EDGETPU_CORAL);
   }
 
-  ASSIGN_OR_RETURN(std::unique_ptr<QuestionAnswerer> answerer,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<QuestionAnswerer> answerer,
                    BertQuestionAnswerer::CreateFromOptions(options));
 
   auto start_answer = steady_clock::now();
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/nl_classifier_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/nl_classifier_demo.cc
index 49f233ce1e74c..72ee5b656a18f 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/nl_classifier_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/nl_classifier_demo.cc
@@ -51,7 +51,7 @@ absl::Status Classify() {
         ->set_delegate(::tflite::proto::Delegate::EDGETPU_CORAL);
   }
 
-  ASSIGN_OR_RETURN(std::unique_ptr<NLClassifier> classifier,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<NLClassifier> classifier,
                    NLClassifier::CreateFromOptions(options));
 
   auto start_classify = steady_clock::now();
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/text_embedder_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/text_embedder_demo.cc
index e28e5fe6a804b..7f3a11cf72795 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/text_embedder_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/text_embedder_demo.cc
@@ -80,13 +80,13 @@ TextEmbedderOptions BuildOptions() {
 absl::Status ComputeCosineSimilarity() {
   // Build TextEmbedder.
   const TextEmbedderOptions options = BuildOptions();
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       std::unique_ptr<TextEmbedder> text_embedder,
       TextEmbedder::CreateFromOptions(options, CreateTextOpResolver()));
 
   // Run search and display results.
   auto start_embed = steady_clock::now();
-  ASSIGN_OR_RETURN(processor::EmbeddingResult first_embedding,
+  TFLITE_ASSIGN_OR_RETURN(processor::EmbeddingResult first_embedding,
                    text_embedder->Embed(absl::GetFlag(FLAGS_first_sentence)));
   auto end_embed = steady_clock::now();
   std::string delegate =
@@ -97,10 +97,10 @@ absl::Status ComputeCosineSimilarity() {
                    .count()
             << " ms" << std::endl;
 
-  ASSIGN_OR_RETURN(processor::EmbeddingResult second_embedding,
+  TFLITE_ASSIGN_OR_RETURN(processor::EmbeddingResult second_embedding,
                    text_embedder->Embed(absl::GetFlag(FLAGS_second_sentence)));
   // Compute cosine similarity.
-  ASSIGN_OR_RETURN(double cosine_similarity,
+  TFLITE_ASSIGN_OR_RETURN(double cosine_similarity,
                    TextEmbedder::CosineSimilarity(
                        first_embedding.embeddings(0).feature_vector(),
                        second_embedding.embeddings(0).feature_vector()));
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/text_searcher_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/text_searcher_demo.cc
index 68c347c2639bb..92b9ffc8adf2b 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/text_searcher_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/text/desktop/text_searcher_demo.cc
@@ -101,13 +101,13 @@ void DisplayResults(const processor::SearchResult& result) {
 absl::Status Search() {
   // Build TextSearcher.
   const TextSearcherOptions options = BuildOptions();
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       std::unique_ptr<TextSearcher> text_searcher,
       TextSearcher::CreateFromOptions(options, CreateTextOpResolver()));
 
   // Run search and display results.
   auto start_search = steady_clock::now();
-  ASSIGN_OR_RETURN(processor::SearchResult result,
+  TFLITE_ASSIGN_OR_RETURN(processor::SearchResult result,
                    text_searcher->Search(absl::GetFlag(FLAGS_input_sentence)));
   auto end_search = steady_clock::now();
   std::string delegate =
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_classifier_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_classifier_demo.cc
index f29bd2de9c535..2650607b13191 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_classifier_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_classifier_demo.cc
@@ -125,11 +125,11 @@ void DisplayResult(const ClassificationResult& result) {
 absl::Status Classify() {
   // Build ImageClassifier.
   const ImageClassifierOptions& options = BuildOptions();
-  ASSIGN_OR_RETURN(std::unique_ptr<ImageClassifier> image_classifier,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<ImageClassifier> image_classifier,
                    ImageClassifier::CreateFromOptions(options));
 
   // Load image in a FrameBuffer.
-  ASSIGN_OR_RETURN(ImageData image,
+  TFLITE_ASSIGN_OR_RETURN(ImageData image,
                    DecodeImageFromFile(absl::GetFlag(FLAGS_image_path)));
   std::unique_ptr<FrameBuffer> frame_buffer;
   if (image.channels == 3) {
@@ -146,7 +146,7 @@ absl::Status Classify() {
 
   // Run classification and display results.
   auto start_classify = steady_clock::now();
-  ASSIGN_OR_RETURN(ClassificationResult result,
+  TFLITE_ASSIGN_OR_RETURN(ClassificationResult result,
                    image_classifier->Classify(*frame_buffer));
   auto end_classify = steady_clock::now();
   std::string delegate =
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_embedder_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_embedder_demo.cc
index 50d615a486751..d5f0cb1233457 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_embedder_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_embedder_demo.cc
@@ -106,22 +106,22 @@ StatusOr<std::unique_ptr<FrameBuffer>> BuildFrameBufferFromImageData(
 absl::Status ComputeCosineSimilarity() {
   // Build ImageEmbedder.
   const ImageEmbedderOptions& options = BuildOptions();
-  ASSIGN_OR_RETURN(std::unique_ptr<ImageEmbedder> image_embedder,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<ImageEmbedder> image_embedder,
                    ImageEmbedder::CreateFromOptions(options));
 
   // Load images into FrameBuffer objects.
-  ASSIGN_OR_RETURN(ImageData first_image,
+  TFLITE_ASSIGN_OR_RETURN(ImageData first_image,
                    DecodeImageFromFile(absl::GetFlag(FLAGS_first_image_path)));
-  ASSIGN_OR_RETURN(std::unique_ptr<FrameBuffer> first_frame_buffer,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<FrameBuffer> first_frame_buffer,
                    BuildFrameBufferFromImageData(first_image));
-  ASSIGN_OR_RETURN(ImageData second_image,
+  TFLITE_ASSIGN_OR_RETURN(ImageData second_image,
                    DecodeImageFromFile(absl::GetFlag(FLAGS_second_image_path)));
-  ASSIGN_OR_RETURN(std::unique_ptr<FrameBuffer> second_frame_buffer,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<FrameBuffer> second_frame_buffer,
                    BuildFrameBufferFromImageData(second_image));
 
   // Extract feature vectors.
   auto start_embed = steady_clock::now();
-  ASSIGN_OR_RETURN(const EmbeddingResult& first_embedding_result,
+  TFLITE_ASSIGN_OR_RETURN(const EmbeddingResult& first_embedding_result,
                    image_embedder->Embed(*first_frame_buffer));
   auto end_embed = steady_clock::now();
   std::string delegate =
@@ -131,10 +131,10 @@ absl::Status ComputeCosineSimilarity() {
                    .count()
             << " ms" << std::endl;
 
-  ASSIGN_OR_RETURN(const EmbeddingResult& second_embedding_result,
+  TFLITE_ASSIGN_OR_RETURN(const EmbeddingResult& second_embedding_result,
                    image_embedder->Embed(*second_frame_buffer));
   // Compute cosine similarity.
-  ASSIGN_OR_RETURN(
+  TFLITE_ASSIGN_OR_RETURN(
       double cosine_similarity,
       ImageEmbedder::CosineSimilarity(
           image_embedder->GetEmbeddingByIndex(first_embedding_result, 0)
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_searcher_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_searcher_demo.cc
index b661447614bc7..0ef54df645447 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_searcher_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_searcher_demo.cc
@@ -106,11 +106,11 @@ void DisplayResult(const processor::SearchResult& result) {
 absl::Status Search() {
   // Build ImageSearcher.
   const ImageSearcherOptions options = BuildOptions();
-  ASSIGN_OR_RETURN(std::unique_ptr<ImageSearcher> image_searcher,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<ImageSearcher> image_searcher,
                    ImageSearcher::CreateFromOptions(options));
 
   // Load image in a FrameBuffer.
-  ASSIGN_OR_RETURN(ImageData image,
+  TFLITE_ASSIGN_OR_RETURN(ImageData image,
                    DecodeImageFromFile(absl::GetFlag(FLAGS_image_path)));
   std::unique_ptr<FrameBuffer> frame_buffer;
   if (image.channels == 3) {
@@ -127,7 +127,7 @@ absl::Status Search() {
 
   // Run search and display results.
   auto start_search = steady_clock::now();
-  ASSIGN_OR_RETURN(processor::SearchResult result,
+  TFLITE_ASSIGN_OR_RETURN(processor::SearchResult result,
                    image_searcher->Search(*frame_buffer));
   auto end_search = steady_clock::now();
   std::string delegate =
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_segmenter_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_segmenter_demo.cc
index 5a566ecbcf921..bebbd44431c90 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_segmenter_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/image_segmenter_demo.cc
@@ -104,7 +104,7 @@ absl::Status EncodeMaskToPngFile(const SegmentationResult& result) {
   }
 
   // Encode mask as PNG.
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       EncodeImageToPngFile(mask, absl::GetFlag(FLAGS_output_mask_png)));
   std::cout << absl::StrFormat("Category mask saved to: %s\n",
                                absl::GetFlag(FLAGS_output_mask_png));
@@ -149,11 +149,11 @@ absl::Status DisplayColorLegend(const SegmentationResult& result) {
 absl::Status Segment() {
   // Build ImageClassifier.
   const ImageSegmenterOptions& options = BuildOptions();
-  ASSIGN_OR_RETURN(std::unique_ptr<ImageSegmenter> image_segmenter,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<ImageSegmenter> image_segmenter,
                    ImageSegmenter::CreateFromOptions(options));
 
   // Load image in a FrameBuffer.
-  ASSIGN_OR_RETURN(ImageData image,
+  TFLITE_ASSIGN_OR_RETURN(ImageData image,
                    DecodeImageFromFile(absl::GetFlag(FLAGS_image_path)));
   std::unique_ptr<FrameBuffer> frame_buffer;
   if (image.channels == 3) {
@@ -170,7 +170,7 @@ absl::Status Segment() {
 
   // Run segmentation and save category mask.
   auto start_segment = steady_clock::now();
-  ASSIGN_OR_RETURN(SegmentationResult result,
+  TFLITE_ASSIGN_OR_RETURN(SegmentationResult result,
                    image_segmenter->Segment(*frame_buffer));
   auto end_segment = steady_clock::now();
   std::string delegate =
@@ -181,10 +181,10 @@ absl::Status Segment() {
                    .count()
             << " ms" << std::endl;
 
-  RETURN_IF_ERROR(EncodeMaskToPngFile(result));
+  TFLITE_RETURN_IF_ERROR(EncodeMaskToPngFile(result));
 
   // Display the legend.
-  RETURN_IF_ERROR(DisplayColorLegend(result));
+  TFLITE_RETURN_IF_ERROR(DisplayColorLegend(result));
 
   // Cleanup and return.
   ImageDataFree(&image);
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/object_detector_demo.cc b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/object_detector_demo.cc
index 20f7403207c2e..28d9243e32dd8 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/object_detector_demo.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/examples/task/vision/desktop/object_detector_demo.cc
@@ -151,7 +151,7 @@ absl::Status EncodeResultToPngFile(const DetectionResult& result,
     }
   }
   // Encode to PNG and return.
-  RETURN_IF_ERROR(
+  TFLITE_RETURN_IF_ERROR(
       EncodeImageToPngFile(*image, absl::GetFlag(FLAGS_output_png)));
   std::cout << absl::StrFormat("Results saved to: %s\n",
                                absl::GetFlag(FLAGS_output_png));
@@ -192,11 +192,11 @@ void DisplayResult(const DetectionResult& result) {
 absl::Status Detect() {
   // Build ObjectDetector.
   const ObjectDetectorOptions& options = BuildOptions();
-  ASSIGN_OR_RETURN(std::unique_ptr<ObjectDetector> object_detector,
+  TFLITE_ASSIGN_OR_RETURN(std::unique_ptr<ObjectDetector> object_detector,
                    ObjectDetector::CreateFromOptions(options));
 
   // Load image in a FrameBuffer.
-  ASSIGN_OR_RETURN(ImageData image,
+  TFLITE_ASSIGN_OR_RETURN(ImageData image,
                    DecodeImageFromFile(absl::GetFlag(FLAGS_image_path)));
   std::unique_ptr<FrameBuffer> frame_buffer;
   if (image.channels == 3) {
@@ -213,7 +213,7 @@ absl::Status Detect() {
 
   // Run object detection and draw results on input image.
   auto start_detect = steady_clock::now();
-  ASSIGN_OR_RETURN(DetectionResult result,
+  TFLITE_ASSIGN_OR_RETURN(DetectionResult result,
                    object_detector->Detect(*frame_buffer));
   auto end_detect = steady_clock::now();
   std::string delegate =
@@ -224,7 +224,7 @@ absl::Status Detect() {
                    .count()
             << " ms" << std::endl;
 
-  RETURN_IF_ERROR(EncodeResultToPngFile(result, &image));
+  TFLITE_RETURN_IF_ERROR(EncodeResultToPngFile(result, &image));
 
   // Display results as text.
   DisplayResult(result);
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/java/src/native/task/vision/jni_utils.cc b/third_party/tflite_support/src/tensorflow_lite_support/java/src/native/task/vision/jni_utils.cc
index 1b08e56ed509b..44254c23a83d4 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/java/src/native/task/vision/jni_utils.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/java/src/native/task/vision/jni_utils.cc
@@ -179,7 +179,7 @@ StatusOr<std::unique_ptr<FrameBuffer>> CreateFrameBufferFromYuvPlanes(
       reinterpret_cast<const uint8*>(GetMappedFileBuffer(env, jv_plane).data());
 
   FrameBuffer::Format format;
-  ASSIGN_OR_RETURN(format,
+  TFLITE_ASSIGN_OR_RETURN(format,
                    GetYUVImageFormat(u_plane, v_plane, pixel_stride_uv));
 
   return CreateFromYuvRawBuffer(
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/metadata/cc/metadata_extractor.cc b/third_party/tflite_support/src/tensorflow_lite_support/metadata/cc/metadata_extractor.cc
index d208da4e03780..4b3f816183c8f 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/metadata/cc/metadata_extractor.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/metadata/cc/metadata_extractor.cc
@@ -79,7 +79,7 @@ tflite::support::StatusOr<ZipFileInfo> GetCurrentZipFileInfo(
     const unzFile& zf) {
   // Open file in raw mode, as data is expected to be uncompressed.
   int method;
-  RETURN_IF_ERROR(UnzipErrorToStatus(
+  TFLITE_RETURN_IF_ERROR(UnzipErrorToStatus(
       unzOpenCurrentFile2(zf, &method, /*level=*/nullptr, /*raw=*/1)));
   if (method != Z_NO_COMPRESSION) {
     return CreateStatusWithPayload(
@@ -89,7 +89,7 @@ tflite::support::StatusOr<ZipFileInfo> GetCurrentZipFileInfo(
 
   // Get file info a first time to get filename size.
   unz_file_info64 file_info;
-  RETURN_IF_ERROR(UnzipErrorToStatus(unzGetCurrentFileInfo64(
+  TFLITE_RETURN_IF_ERROR(UnzipErrorToStatus(unzGetCurrentFileInfo64(
       zf, &file_info, /*szFileName=*/nullptr, /*szFileNameBufferSize=*/0,
       /*extraField=*/nullptr, /*extraFieldBufferSize=*/0,
       /*szComment=*/nullptr, /*szCommentBufferSize=*/0)));
@@ -97,7 +97,7 @@ tflite::support::StatusOr<ZipFileInfo> GetCurrentZipFileInfo(
   // Second call to get file name.
   auto file_name_size = file_info.size_filename;
   char* c_file_name = (char*)malloc(file_name_size);
-  RETURN_IF_ERROR(UnzipErrorToStatus(unzGetCurrentFileInfo64(
+  TFLITE_RETURN_IF_ERROR(UnzipErrorToStatus(unzGetCurrentFileInfo64(
       zf, &file_info, c_file_name, file_name_size,
       /*extraField=*/nullptr, /*extraFieldBufferSize=*/0,
       /*szComment=*/nullptr, /*szCommentBufferSize=*/0)));
@@ -113,7 +113,7 @@ tflite::support::StatusOr<ZipFileInfo> GetCurrentZipFileInfo(
   }
 
   // Close file and return.
-  RETURN_IF_ERROR(UnzipErrorToStatus(unzCloseCurrentFile(zf)));
+  TFLITE_RETURN_IF_ERROR(UnzipErrorToStatus(unzCloseCurrentFile(zf)));
 
   ZipFileInfo result{};
   result.name = file_name;
@@ -131,7 +131,7 @@ ModelMetadataExtractor::CreateFromModelBuffer(const char* buffer_data,
   // https://abseil.io/tips/126.
   std::unique_ptr<ModelMetadataExtractor> extractor =
       absl::WrapUnique(new ModelMetadataExtractor());
-  RETURN_IF_ERROR(extractor->InitFromModelBuffer(buffer_data, buffer_size));
+  TFLITE_RETURN_IF_ERROR(extractor->InitFromModelBuffer(buffer_data, buffer_size));
   return extractor;
 }
 
@@ -261,7 +261,7 @@ absl::Status ModelMetadataExtractor::ExtractAssociatedFiles(
   if (global_info.number_entry > 0) {
     int error = unzGoToFirstFile(zf);
     while (error == UNZ_OK) {
-      ASSIGN_OR_RETURN(auto zip_file_info, GetCurrentZipFileInfo(zf));
+      TFLITE_ASSIGN_OR_RETURN(auto zip_file_info, GetCurrentZipFileInfo(zf));
       // Store result in map.
       associated_files_[zip_file_info.name] = absl::string_view(
           buffer_data + zip_file_info.position, zip_file_info.size);
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/scann_ondevice/cc/index.cc b/third_party/tflite_support/src/tensorflow_lite_support/scann_ondevice/cc/index.cc
index 8e45119d7364d..2c2006725ec25 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/scann_ondevice/cc/index.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/scann_ondevice/cc/index.cc
@@ -64,13 +64,13 @@ absl::StatusOr<std::unique_ptr<Index>> Index::CreateFromIndexBuffer(
   // Use absl::WrapUnique() to call private constructor:
   // https://abseil.io/tips/126.
   std::unique_ptr<Index> index = absl::WrapUnique(new Index());
-  RETURN_IF_ERROR(index->InitFromBuffer(buffer_data, buffer_size));
+  TFLITE_RETURN_IF_ERROR(index->InitFromBuffer(buffer_data, buffer_size));
   return index;
 }
 
 absl::StatusOr<IndexConfig> Index::GetIndexConfig() const {
   std::string key(kIndexConfigKey);
-  ASSIGN_OR_RETURN(absl::string_view value,
+  TFLITE_ASSIGN_OR_RETURN(absl::string_view value,
                    GetValueForKey(config_iterator_.get(), key));
   IndexConfig config;
   if (!config.ParseFromString(std::string(value))) {
diff --git a/third_party/tflite_support/src/tensorflow_lite_support/scann_ondevice/cc/index_builder.cc b/third_party/tflite_support/src/tensorflow_lite_support/scann_ondevice/cc/index_builder.cc
index fe5d1ef1175e4..94c85334f0574 100644
--- a/third_party/tflite_support/src/tensorflow_lite_support/scann_ondevice/cc/index_builder.cc
+++ b/third_party/tflite_support/src/tensorflow_lite_support/scann_ondevice/cc/index_builder.cc
@@ -104,7 +104,7 @@ absl::StatusOr<std::string> CreateIndexBufferImpl(
   }
 
   std::string buffer;
-  ASSIGN_OR_RETURN(auto mem_writable_file, MemWritableFile::Create(&buffer));
+  TFLITE_ASSIGN_OR_RETURN(auto mem_writable_file, MemWritableFile::Create(&buffer));
 
   leveldb::Options options;
   options.compression =
-- 
2.42.0.515.g380fc7ccd1-goog