/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
syntax = "proto2";
package tflite.task.processor;
option java_multiple_files = true;
option java_package = "org.tensorflow.lite.task.processor.proto";
// Options for image segmentation processor.
// Next Id: 3
message SegmentationOptions {
// The locale to use for display names specified through the TFLite Model
// Metadata, if any. Defaults to English.
optional string display_names_locale = 1 [default = "en"];
// Output mask type. This allows specifying the type of post-processing to
// perform on the raw model results (see SegmentationResult proto for more).
enum OutputType {
UNSPECIFIED = 0;
// Gives a single output mask where each pixel represents the class which
// the pixel in the original image was predicted to belong to.
CATEGORY_MASK = 1;
// Gives a list of output masks where, for each mask, each pixel represents
// the prediction confidence, usually in the [0, 1] range.
CONFIDENCE_MASK = 2;
}
// Optional output mask type.
optional OutputType output_type = 2 [default = CATEGORY_MASK];
}