/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
syntax = "proto2";
package tflite.task.text;
import "tensorflow_lite_support/cc/task/core/proto/base_options.proto";
import "tensorflow_lite_support/cc/task/processor/proto/embedding_options.proto";
import "tensorflow_lite_support/cc/task/processor/proto/search_options.proto";
// Options for setting up an TextSearcher.
// Next Id: 4.
message TextSearcherOptions {
// Base options for configuring the TextSearcher. This specifies the TFLite
// model to use for embedding extraction, as well as hardware acceleration
// options to use as inference time.
optional tflite.task.core.BaseOptions base_options = 1;
// Options controlling the behavior of the embedding model specified in the
// base options.
optional tflite.task.processor.EmbeddingOptions embedding_options = 2;
// Options specifying the index to search into and controlling the search
// behavior.
optional tflite.task.processor.SearchOptions search_options = 3;
}