/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_LITE_SUPPORT_CC_TASK_VISION_UTILS_IMAGE_TENSOR_SPECS_H_ #define TENSORFLOW_LITE_SUPPORT_CC_TASK_VISION_UTILS_IMAGE_TENSOR_SPECS_H_ #include <array> #include "absl/types/optional.h" // from @com_google_absl #include "tensorflow/lite/c/common.h" #include "tensorflow_lite_support/cc/port/statusor.h" #include "tensorflow_lite_support/cc/task/core/tflite_engine.h" #include "tensorflow_lite_support/metadata/cc/metadata_extractor.h" #include "tensorflow_lite_support/metadata/metadata_schema_generated.h" namespace tflite { namespace task { namespace vision { // Parameters used for input image normalization when input tensor has // kTfLiteFloat32 type. // // Exactly 1 or 3 values are expected for `mean_values` and `std_values`. In // case 1 value only is specified, it is used for all channels. E.g. for a RGB // image, the normalization is done as follow: // // (R - mean_values[0]) / std_values[0] // (G - mean_values[1]) / std_values[1] // (B - mean_values[2]) / std_values[2] // // `num_values` keeps track of how many values have been provided, which should // be 1 or 3 (see above). In particular, single-channel grayscale images expect // only 1 value. struct NormalizationOptions { … }; // Parameters related to the expected tensor specifications when the tensor // represents an image. // // E.g. input tensor specifications expected by the model at Invoke() time. In // such a case, and before running inference with the TF Lite interpreter, the // caller must use these values and perform image preprocessing and/or // normalization so as to fill the actual input tensor appropriately. struct ImageTensorSpecs { … }; // Performs sanity checks on the expected input tensor including consistency // checks against model metadata, if any. For now, a single RGB input with BHWD // layout, where B = 1 and D = 3, is expected. Returns the corresponding input // specifications if they pass, or an error otherwise (too many input tensors, // etc). // Note: both interpreter and metadata extractor *must* be successfully // initialized before calling this function by means of (respectively): // - `tflite::InterpreterBuilder`, // - `tflite::metadata::ModelMetadataExtractor::CreateFromModelBuffer`. tflite::support::StatusOr<ImageTensorSpecs> BuildInputImageTensorSpecs( const tflite::task::core::TfLiteEngine::Interpreter& interpreter, const tflite::metadata::ModelMetadataExtractor& metadata_extractor); } // namespace vision } // namespace task } // namespace tflite #endif // TENSORFLOW_LITE_SUPPORT_CC_TASK_VISION_UTILS_IMAGE_TENSOR_SPECS_H_